Skip to main content
Log in

Comparative development of staminate and pistillate flowers in the dioecious cactus Opuntia robusta

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key Message

PCD role in unisexual flowers.

Abstract

The developmental processes underlying the transition from hermaphroditism to unisexuality are key to understanding variation and evolution of floral structure and function. A detailed examination of the cytological and histological patterns involved in pollen and ovule development of staminate and pistillate flowers in the dioecious Opuntia robusta was undertaken, and the potential involvement of programmed cell death in the abortion of the sex whorls was explored. Flowers initiated development as hermaphrodites and became functionally unisexual by anthesis. Female individuals have pistillate flowers with a conspicuous stigma, functional ovary, collapsed stamens and no pollen grains. Male individuals have staminate flowers, with large yellow anthers, abundant pollen grains, underdeveloped stigma, style and an ovary that rarely produced ovules. In pistillate flowers, anther abortion resulted from the premature degradation of the tapetum by PCD, followed by irregular deposition of callose wall around the microsporocytes, and finally by microspore degradation. In staminate flowers, the stigma could support pollen germination; however, the ovaries were reduced, with evidence of placental arrest and ovule abortion through PCD, when ovules were present. We demonstrate that PCD is recruited in both pistillate and staminate flower development; however, it occurs at different times of floral development. This study contributes to the understanding of the nature of the O. robusta breeding system and identifies developmental landmarks that contribute to sexual determination in Cactaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainsworth C (2000) Boys and girls come out to play: the molecular biology of dioecious plants. Ann Bot 86:211–221

    Article  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber Press, Portland

    Google Scholar 

  • Bai SL, Peng YB, Cui JX et al (2004) Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230–240

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Leaver C (2001) The PET-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett SC (2010) Understanding plant reproductive diversity. Philos Trans R Soc Lond B Biol Sci 365:99–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett SC, Yakimowski SB, Field DL, Pickup M (2010) Ecological genetics of sex ratios in plant populations. Philos Trans R Soc Lond B Biol Sci 365:2549–2557

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bencivenga S, Simonini S, Benková E, Colombo L (2012) The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-Hollis H (1978) Las Cactáceas de México, vol 1. Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Calderon-Urrea A, Dellaporta S (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435–441

    CAS  PubMed  Google Scholar 

  • Caporali E, Carboni A, Galli MG, Rossi G, Spada A, Longo GM (1994) Development of male and female flower in Asparagus officinalis. Search for point of transition from hermaphroditic to unisexual developmental pathway. Sex Plant Reprod 7:239–249

    Article  Google Scholar 

  • Caporali E, Spada A, Marziani G, Failla O, Scienza A (2003) The arrest of development of abortive reproductive organs in the unisexual flower of Vitis vinifera ssp. sylvestris. Sex Plant Reprod 15:291–300

    Google Scholar 

  • Caporali E, Roccotiello E, Cornara L, Casazza G, Minuto L (2006) An anatomical study of floral variation in Thymelaea hirsuta (L.) Endl. related to sexual dimorphism. Plant Biosyst 140:123–131

    Article  Google Scholar 

  • Coimbra S, Torrao L, Abreu I (2004) Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol Biochem 42:537–541

    Article  CAS  PubMed  Google Scholar 

  • Daher A, Adam H, Chabrillange N, Collin M, Mohamed N, Tregear JW, Aberlenc-Bertossi F (2010) Cell cycle arrest characterizes the transition from a bisexual floral bud to a unisexual flower in Phoenix dactylifera. Ann Bot 106:255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Castillo RF (1986) La selección natural de los sistemas de cruzamiento de Opuntia robusta. MSc Thesis, Colegio de Posgraduados, México

  • del Castillo RF, González-Espinosa M (1988) Una interpretación evolutiva del polimorfismo sexual de Opuntia robusta (Cactaceae). Agrociencia 71:185–196

    Google Scholar 

  • del Castillo RF, Trujillo-Argueta S (2009) Reproductive implications of combined and separate sexes in a trioecious population of Opuntia robusta (Cactaceae). Am J Bot 96:1148–1158

    Article  PubMed  Google Scholar 

  • del Castillo RF, Trujillo-Argueta S (2018) On the possible role of nonreproductive traits for the evolution of unisexuality: life-history variation among males, females, and hermaphrodites in Opuntia robusta (Cactaceae). Ecol Evol 8:6988–7001

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1994) The sex determination process in maize. Science 266:1501–1505

    Article  CAS  PubMed  Google Scholar 

  • Delph LF, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128

    Article  PubMed  Google Scholar 

  • Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JR, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27:368–376

    Article  CAS  PubMed  Google Scholar 

  • Domínguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328

    Article  CAS  PubMed  Google Scholar 

  • Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188

    Article  PubMed  Google Scholar 

  • Falasca G, D’Angeli S, Biasi R, Fattorini L, Matteucci M, Canini A, Altamura MM (2013) Tapetum and middle layer control male fertility in Actinidia deliciosa. Ann Bot 112:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Rentería L, Orozco-Arroyo G, Cruz-García F, García-Campusano F, Alfaro I, Vázquez-Santana S (2013) Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae). Ann Bot 112:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman DC, Doust JL, El-Keblawy A, Miglia KJ, Mcarthur ED (1997) Sexual specialization and inbreeding avoidance in the evolution of dioecy. Bot Rev 63:65–92

    Article  Google Scholar 

  • Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R, Ashman TL (2017) Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71:898–912

    Article  PubMed  Google Scholar 

  • Grant S, Hunkirchen B, Saedler H (1994) Developmental differences between male and female flowers in the dioecious plant Silene latifolia. Plant J 6:471–480

    Article  Google Scholar 

  • Gutiérrez-Flores C, Cota-Sánchez JH, León-de la Luz JL, García-De León FJ (2017) Disparity in floral traits and breeding systems in the iconic columnar cactus Pachycereus pringlei (Cactaceae). Flora 235:18–28

    Article  Google Scholar 

  • Hernández-Cruz R, Barrón-Pacheco F, Sánchez D, Arias S, Vázquez-Santana S (2018) Functional dioecy in Echinocereus: ontogenetic patterns, programmed cell death and evolutionary significance. Int J Plant Sci 179:257–274

    Article  Google Scholar 

  • Janczur MK, León SHJ, Solache RLT et al (2014) Chemical and physical defense traits in two sexual forms of Opuntia robusta in central eastern Mexico. PLoS ONE 9(3):e89535. https://doi.org/10.1371/journal.pone.0089535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang Z, Cao J (2013) Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol 15:249–263

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Käfer J, Marais GAB, Pannell JR (2017) On the rarity of dioecy in flowering plants. Mol Ecol 26:1225–1241

    Article  PubMed  Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47:784–787

    Article  CAS  PubMed  Google Scholar 

  • Ku S, Yoon H, Suh H, Chung Y (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559–565

    Article  CAS  PubMed  Google Scholar 

  • Leuenberger BE (1986) Pereskia (Cactaceae). Mem N Y Bot Gard 41:1–141

    Google Scholar 

  • Li Q, Liu B (2017) Genetic regulation of maize flower development and sex determination. Planta 245:1–14

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang DS, Liu HS et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C (2011) Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-Box adenosine 59-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Uchida W, Kawano S (2004) Sex-specific cell division during development of unisexual flowers in the dioecious plant Silene latifolia. Plant Cell Physiol 45:795–802

    Article  CAS  PubMed  Google Scholar 

  • Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6:320–325

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CH, Diggle PK (2005) The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. Am J Bot 92:1068–1076

    Article  PubMed  Google Scholar 

  • Negrón-Ortiz V, Strittmatter LI (2004) Embryology of floral dimorphism and gender system in Consolea corallicola (Cactaceae), a rare species of the Florida Keys. Haseltonia 10:16–25

    Google Scholar 

  • Nyffeler R (2002) Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am J Bot 89:312–326

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Arroyo G, Vázquez-Santana S, Camacho A, Dubrovsky JG, Cruz-García F (2012) Inception of maleness: auxin contribution to flower masculinization in the dioecious cactus Opuntia stenopetala. Planta 236:225–238

    Article  CAS  PubMed  Google Scholar 

  • Orzáez D, Granell A (1997) DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J 11:137–144

    Article  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  CAS  PubMed  Google Scholar 

  • Pannell JR, Ojeda F (2008) Patterns of flowering and sex-ratio variation in the Mediterranean shrub Phillyrea angustifolia (Oleaceae): implications for the maintenance of males with hermaphrodites. Ecol Lett 3:495–502

    Article  Google Scholar 

  • Pannell JR, Eppley SM, Dorken ME, Berjano R (2014) Regional variation in sex ratios and sex allocation in androdioecious Mercurialis annua. J Evol Biol 27:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Reddy TV, Kaur J, Agashe B, Sundaresan V, Siddiqi I (2003) The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development 130:5975–5987

    Article  CAS  PubMed  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596

    Article  PubMed  Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants –genes and environmental stress with special reference to high temperature injury. Int J Dev Biol 2:42–51

    Google Scholar 

  • Sánchez D, Vázquez-Santana S (2018) Embryology of Mammillaria dioica (Cactaceae) reveals a new male sterility phenotype. Flora 241:16–26

    Article  Google Scholar 

  • Sherry RA, Eckard KJ, Lord EM (1993) Flower development in dioecious Spinacia oleracea (Chenopodiaceae). Am J Bot 80:283–291

    Article  Google Scholar 

  • Shi Y, Zhao S, Yao J (2009) Premature tapetum degeneration: a major cause of abortive pollen development in photoperiod sensitive genic male sterility in rice. J Integr Plant Biol 51:774–781

    Article  PubMed  Google Scholar 

  • Sosa VJ, Fleming TH (1999) Seedling performance in a trioecious cactus, Pachycereus pringlei: effects of maternity and paternity. Plant Syst Evol 218:145–151

    Article  Google Scholar 

  • Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. Plant J 47:310–327

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter LI, Negrón-Ortiz V, Hickey RJ (2002) Subdioecy in Consolea spinosissima (Cactaceae): breeding system and embryological studies. Am J Bot 89:1373–1387

    Article  PubMed  Google Scholar 

  • Strittmatter LI, Negrón-Ortiz V, Hickey RJ (2006) Comparative microsporangium development in male-fertile and male sterile flowers of Consolea (Cactaceae): when and how does pollen abortion occur? Grana 45:81–100

    Article  Google Scholar 

  • Strittmatter LI, Hickey RJ, Negrón-Ortiz V (2008) Heterochrony and its role in sex determination of cryptically dioecious Consolea (Cactaceae) staminate flowers. Bot J Linn Soc 156:305–326

    Article  Google Scholar 

  • Varnier A-L, Mazeyrat-Gourbeyre F, Sangwan RS, Clément C (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol 152:118–128

    Article  CAS  PubMed  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G et al (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Hayashi T, Nakayama K, Koike S (2006) Expression analysis of genes for callose synthases and Rho-type small GTP-binding proteins that are related to callose synthesis in rice anther. Biosci Biotechnol Biochem 70:639–645

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Makaroff CA, Ma H (2003) The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell 6:1281–1295

    Article  Google Scholar 

  • Young TE, Giesler-Lee J, Gallie DR (2004) Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J 38:910–922

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sun YL, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liu D, Lv X, Wang Y, Xun Z, Liu Z, Li F, Lu H (2014) The cysteine protease CEP1, a key executer involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 26:2939–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Silvia Espinosa for SEM work, to Gabriel Orozco for confocal microscopy, to Anabel Bieler for light microscopy, and Aldo Domínguez for illustration of Fig. 8. We particularly thank the anonymous reviewers for comments to the final version of the manuscript. This work was supported by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica [IN226808 to S.V.S.] and Consejo Nacional de Ciencia y Tecnología [101771 to S.V.S.]. Fellowship from Consejo Nacional de Ciencia y Tecnología [to R.H.C. and F.G.C.]. Graduate Program in Biological Sciences of the National Autonomous University of Mexico (UNAM) for R.H.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Vázquez-Santana.

Additional information

Communicated by Joseph Williams.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

DNA degradation in ovaries of pistillate flowers. (a-i) In the left column, light microscopy (a, d, g). In the central column, sections stained with DAPI (b, e, h, j, l). The right column corresponds to the TUNEL assays (c, f, i, k, m). a-c No signal of DNA fragmentation was detected in stigmatic lobes of pistillate flowers before anthesis. Autofluorescence of stigmatic papillae in c. d-f No signal of DNA fragmentation was detected in the transmission tissue of stylar canal. DNA fragmentation in some nuclei in the mucilage-producing cells (white arrows in f). g-i DNA fragmentation in the mucilage-producing cells in the style (white arrows in i). j-k Positive control of the TUNEL assay; the green fluorescence showing DNA fragmentation observed in all nuclei as expected (white arrows in k). l-m Negative control of the TUNEL assay shows no fluorescent nuclei (m). Scale bars = 200 μm (a-i), 50 μm (j-m). Mc mucilage-producing cells, P papilla, sc stylar channel, Tt transmitting tissue. (TIFF 14119 kb)

Supplementary Table 1

Main characteristics of developmental stages in staminate and pistillate flowers of Opuntia robusta. (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Cruz, R., Silva-Martínez, J., García-Campusano, F. et al. Comparative development of staminate and pistillate flowers in the dioecious cactus Opuntia robusta. Plant Reprod 32, 257–273 (2019). https://doi.org/10.1007/s00497-019-00365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-019-00365-w

Keywords

Navigation