Skip to main content
Log in

A novel pollen tube growth assay utilizing a transmitting tract-ablated Nicotiana tabacum style

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Sexual plant reproduction requires multiple pollen–pistil interactions from the stigma (pollen adhesion, hydration, and germination) to the ovary (fertilization). Understanding the factors that regulate pollen tube growth is critical to understanding the processes essential to sexual reproduction. Many pollen tube growth assays (PTGAs) have shorter and slower pollen tube growth when compared to pollen tube growth through the style. The identification and study of factors that regulate pollen tube growth have been impeded by a lack of an efficient and reproducible PTGA. The objective of this research is to develop a robust assay for Nicotiana tabacum pollen tube growth in an environment that supports sustained and normal growth yet is amenable to testing the effects of specific factors. In this paper, we introduce a novel PTGA, which uses pistils from N. tabacum that lack a mature transmitting tract (TT) due to tissue-specific ablation. The TT-ablated style supports normal pollen tube growth and the hollow structure of the style allows modification of the growth environment by direct injection of test material. This PTGA is robust and allows for rapid and accurate measurement of pollen tube length and pollen tube morphology, supporting pollen tube growth from 20 to 35°C and at pH ranging from 4.8 to 7.6. Use of the ablated style for a PTGA is a novel method for the culture of pollen tubes with sustained growth in vivo while permitting the application of treatments to the growing pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beecher B, Zurek D, McClure B (2001) Effects of RNases on rejection of pollen from Nicotiana tabacum and N. plumbaginifolia. Sex Plant Reprod 14:69–76

    Article  CAS  Google Scholar 

  • Bosch M, Knudsen JS, Derksen J, Mariani C (2001) Class III Pistil-specific Extensin-like proteins from tobacco have characteristics of arabinogalactan proteins. Plant Physiol 125:2180–2188

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Derksen J, Mariani C (2003) A functional study of stylar hydroxyproline-rich glycoproteins during pollen tube growth. Sex Plant Reprod 16:87–98

    Article  CAS  Google Scholar 

  • Brewbaker JL (1959) Biology of the angiosperm pollen grain. Indian J Genet Plant Breed 19:121–133

    Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:747–858

    Article  Google Scholar 

  • Capkova-Balatkova V, Hrabetova E, Tupy J (1980) Effect of some mineral ions on pollen tube growth and release of proteins in culture. Biol Plant 22(4):294–302

    Article  CAS  Google Scholar 

  • Chapman L, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-F, Matsubayashi Y, Sakagami Y (2000) Peptide growth factor phytosulfokine-α contributes to the pollen population effect. Planta 211:752–755

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wang H, Wu H (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  PubMed  CAS  Google Scholar 

  • Crawford BCW, Yanofsky MF (2008) The formation and function of the female reproductive tract in flowering plants. Curr Biol 18:R972–R978

    Article  PubMed  CAS  Google Scholar 

  • Crawford BCW, Ditta G, Yanofsky MF (2007) The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol 17:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • De Graaf BHJ, Knuiman BA, van der Weerden GM, Feron R, Derksen J, Mariana C (2004) The PELPIII glycoproteins in Solanaceae: stylar expression and transfer into pollen tube walls. Sex Plant Reprod 16:245–252

    Article  Google Scholar 

  • Distefano G, Casas GL, Malfa SL, Gentile A, Tribulato E (2009) Pollen tube behavior in different mandarin hybrids. J Am Soc Hortic Sci 134:583–588

    Google Scholar 

  • Franklin-Tong VE, Lawrence MJ, Franklin FCH (1988) An in vitro bioassay for the stigmatic product of the self-incompatibility gene in Papaver rhoeas L. New Phytol 110:109–118

    Article  Google Scholar 

  • Gardner N, Felsheim R, Smith AG (2009) Production of male- and female-sterile plants through reproductive tissue ablation. J Plant Physiol 166:871–881

    Article  PubMed  CAS  Google Scholar 

  • Good NE, Winget DG, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  PubMed  CAS  Google Scholar 

  • Gremski K, Ditta G, Yanofsky MF (2007) The HECTATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134:3593–3601

    Article  PubMed  CAS  Google Scholar 

  • Harris PJ, Weinhandl JA, Clarke AE (1989) Effect of in vitro pollen growth of an isolated style glycoprotein associated with self-incompatibility in Nicotiana alata. Plant Physiol 89:360–367

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Inatsugi R (2006) Comparative analysis of biological models used in the study of pollen tube growth. Plant Cell Monogr 3:265–286

    Article  CAS  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signaling pathways regulate pollen-stigma interactions; the search for consensus. New Phytol 179:286–317

    Article  PubMed  CAS  Google Scholar 

  • Jahnen W, Lush WM, Clarke AE (1989) Inhibition of in vitro pollen tube growth by isolated S-glycoproteins of Nicotiana alata. Plant Cell 1:501–510

    Article  PubMed  CAS  Google Scholar 

  • Jauh GY, Eckard KJ, Nothnagel EA, Lord EM (1997) Adhesion of lily pollen tubes on an artificial matrix. Sex Plant Reprod 10:173–180

    Article  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang CQ, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  PubMed  CAS  Google Scholar 

  • Johri BM, Vasil IK (1961) Physiology of pollen. Bot Rev 27:325–381

    Article  CAS  Google Scholar 

  • Kakani VG, Prasad PVV, Craufurd PQ, Wheeler TR (2002) Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ 25:1651–1661

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR, Zhao D (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67

    Article  PubMed  CAS  Google Scholar 

  • Karapanos IC, Akoumianakis KA, Olympios CM, Passam HC (2010) Tomato pollen respiration in relation to in vitro germination and pollen tube growth under favorable and stress-inducing temperatures. Sex Plant Reprod 23:219–224

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Kino H, Tanaka H, Tsujimoto H (2007) Pollen tube growth in cross combinations between Torenia fournieri and fourteen related species. Breeding Sci 57:117–122

    Article  Google Scholar 

  • Kuboyama T, Cheng CS, Takeda G (1994) The diversity of interspecific pollen-pistil incongruity in Nicotiana. Sex Plant Reprod 7:250–258

    Article  Google Scholar 

  • Labarca C, Kroh M, Loewus F (1970) Composition of stigmatic exudates from Lilium longiflorum: labeling studies with Myo-inositol, d-glucose, and 1-proline. Plant Physiol 46:150–156

    Article  PubMed  CAS  Google Scholar 

  • Lee CB, Page LE, McClure BA, Holtsford TP (2008) Post-pollination hybridization barriers in Nicotiana section Alatae. Sex Plant Reprod 21:183–195

    Article  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  PubMed  CAS  Google Scholar 

  • Lord EM, Sanders LC (1992) Roles for the extracellular matrix in plant development and pollination: a special case of cell movement in plants. Dev Biol 153:16–28

    Article  PubMed  CAS  Google Scholar 

  • Lush MW, Opat AS, Nie F, Clarke AE (1997) An in vitro assay for assessing the effects of growth factors on Nicotiana alata pollen tubes. Sex Plant Reprod 10:351–357

  • Mulcahy GB, Mulcahy DL (1985) Ovarian influence on pollen tube growth, as indicated by the semivivo technique. Am J Bot 72:1078–1080

    Article  Google Scholar 

  • Murfett J, Cornish EC, Ebert PR, Bonig I, McClure BA, Clarke AE (1992) Expression of a self-incompatible glycoprotein (S 2-Ribonuclease) from Nicotiana alata in transgenic Nicotiana tabacum. Plant Cell 4:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7

    Article  PubMed  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621. doi:10.1371/journal.pgen.1000621

    Article  PubMed  Google Scholar 

  • Rea AC, Liu P, Nasrallah JB (2010) A transgenic self-incompatible Arabidopsis thaliana model for evolutionary and mechanistic studies of crucifer self-incompatibility. J Exp Bot 61:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Read SM, Clarke AE, Bacic A (1993) Stimulation of growth of cultured Nicotiana tabacum W-38 pollen tubes by poly(ethylene glycol) and Cu(II) salts. Protoplasma 177:1–14

    Article  CAS  Google Scholar 

  • Sauter M (2009) A guided tour: pollen tube orientation in flowering plants. Chinese Sci Bull 54:2376–2382

    Article  CAS  Google Scholar 

  • Shivanna KR, Linskens HF, Cresti M (1991) Responses of tobacco pollen to high humidity and heat stress: viability and germinability in vitro and in vivo. Sex Plant Reprod 4:104–109

    Article  Google Scholar 

  • Stephenson AG, Travers SE, Mena-Ali JI, Winsor JA (2003) Pollen performance before and during the autotrophic-heterotrophic transition of pollen tube growth. Philos Trans R Soc Lond Ser B 358:1009–1018

    Article  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  PubMed  CAS  Google Scholar 

  • Valdivia ER, Stephenson AG, Durachko DM, Cogsgrove D (2009) Class B ß-expansins are needed for pollen separation and stigma penetration. Sex Plant Reprod 22:141–152

    Article  PubMed  Google Scholar 

  • Williams EG, Ramm-Anderson S, Dumas C, Mau SL, Clarke AE (1982) The effect of isolated components of Prunus avium L. styles on in vitro grown pollen tubes. Planta 156:417–519

    Article  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen tube growth. Nature 392:818–821

    Article  PubMed  CAS  Google Scholar 

  • Wu H, deGraaf B, Mariani C, Cheung AY (2001) Hydroxyproline-rich glycoproteins in plant reproductive tissues; structure, functions and regulation. Cell Mol Life Sci 58:1418–1429

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Zhang D, Wengier D, Shuai B, Gui CP, Mushietti J, McCormic S, Tang WH (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148:1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Nation Science Foundation (IOS-0920114), the MN Agricultural Experiment station, the University of Minnesota Plant Biological Sciences Graduate Program and the Microbial Plant and Genomics Institute at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie A. Eberle.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberle, C.A., Clasen, B.M., Anderson, N.O. et al. A novel pollen tube growth assay utilizing a transmitting tract-ablated Nicotiana tabacum style. Sex Plant Reprod 25, 27–37 (2012). https://doi.org/10.1007/s00497-011-0177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-011-0177-9

Keywords

Navigation