Skip to main content
Log in

Nuclear behavior, cell polarity, and cell specification in the female gametophyte

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

In flowering plants, the haploid gamete-forming generation comprises only a few cells and develops within the reproductive organs of the flower. The female gametophyte has become an attractive model system to study the genetic and molecular mechanisms involved in pattern formation and gamete specification. It originates from a single haploid spore through three free nuclear division cycles, giving rise to four different cell types. Research over recent years has allowed to catch a glimpse of the mechanisms that establish the distinct cell identities and suggests dynamic cell–cell communication to orchestrate not only development among the cells of the female gametophyte but also the interaction between male and female gametophytes. Additionally, cytological observations and mutant studies have highlighted the importance of nuclei migration- and positioning for patterning the female gametophyte. Here we review current knowledge on the mechanisms of cell specification in the female gametophyte, emphasizing the importance of positional cues for the establishment of distinct molecular profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alandete-Saez M, Ron M, McCormick S (2008) GEX3, expressed in the male gametophyte and in the egg cell of Arabidopsis thaliana, is essential for micropylar pollen tube guidance and plays a role during early embryogenesis. Mol Plant 1:586–598

    PubMed  CAS  Google Scholar 

  • Ambrose JC, Cyr R (2008) Mitotic spindle organization by the preprophase band. Mol Plant 1:950–960

    PubMed  CAS  Google Scholar 

  • Amien S, Kliwer I, Marton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388

    PubMed  Google Scholar 

  • Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F (2010) Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 137:2683–2690

    PubMed  CAS  Google Scholar 

  • Bemer M, Wolters-Arts M, Grossniklaus U, Angenent GC (2008) The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. Plant Cell 20:2088–2101

    PubMed  CAS  Google Scholar 

  • Bencivenga S, Colombo L, Masiero S (2011) Cross talk between the sporophyte and the megagametophyte during ovule development. Sex Plant Reprod, (this issue)

  • Berger F, Chaudhury A (2009) Parental memories shape seeds. Trends Plant Sci 14:550–556

    Google Scholar 

  • Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization–caught in the act. Trends Plant Sci 13:437–443

    PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Frietsch S, Kim TH, Dizon MB, Schroeder JI (2007) The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. Curr Biol 18:63–68

    PubMed  Google Scholar 

  • Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288

    PubMed  CAS  Google Scholar 

  • Capron A, Gourgues M, Neiva LS, Faure JE, Berger F, Pagnussat G, Krishnan A, Alvarez-Mejia C, Vielle-Calzada JP, Lee YR, Liu B, Sundaresan V (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049

    PubMed  CAS  Google Scholar 

  • Carlson WR (1969) Factors affecting preferential fertilization in maize. Genetics 62:543–554

    PubMed  CAS  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    PubMed  CAS  Google Scholar 

  • Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577

    PubMed  CAS  Google Scholar 

  • Chen Z, Tan JL, Ingouff M, Sundaresan V, Berger F (2008) Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 135:65–73

    PubMed  CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    PubMed  CAS  Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Google Scholar 

  • Christensen CA, Subramanian S, Drews GN (1998) Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev Biol 202:136–151

    PubMed  CAS  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    PubMed  CAS  Google Scholar 

  • Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    PubMed  CAS  Google Scholar 

  • Diboll AG, Larson DA (1966) An electron micrographic study of the mature megagametophyte in Zea mays. Am J Bot 53:391–402

    PubMed  CAS  Google Scholar 

  • Dresselhaus T (2006) Cell-cell communication during double fertilization. Curr Opin Plant Biol 9:41–47

    PubMed  CAS  Google Scholar 

  • Dresselhaus T, Marton ML (2009) Micropylar pollen tube guidance and burst: adapted from defense mechanisms? Curr Opin Plant Biol 12:773–780

    PubMed  CAS  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    PubMed  CAS  Google Scholar 

  • Ebel C, Mariconti L, Gruissem W (2004) Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429:776–780

    PubMed  CAS  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    PubMed  CAS  Google Scholar 

  • Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    PubMed  CAS  Google Scholar 

  • Evans MMS, Grossniklaus U (2009) The maize megagametophyte. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 79–104

    Google Scholar 

  • Faure JE, Rusche ML, Thomas A, Keim P, Dumas C, Mogensen HL, Rougier M, Chaboud A (2003) Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells. Plant J 33:1051–1062

    PubMed  Google Scholar 

  • Frank AC, Johnson MA (2009) Expressing the diphtheria toxin A subunit from the HAP2(GCS1) promoter blocks sperm maturation and produces single sperm-like cells capable of fertilization. Plant Physiol 151:1390–1400

    PubMed  CAS  Google Scholar 

  • Franklin-Tong N (2010) Plant fertilization: bursting pollen tubes!. Curr Biol 20:R681–R683

    PubMed  CAS  Google Scholar 

  • Frey N, Klotz J, Nick P (2010) A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J Exp Bot 61:3423–3437

    PubMed  CAS  Google Scholar 

  • Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340

    PubMed  CAS  Google Scholar 

  • Friedman WE, Sundaresan V (2011) TITLE. Sex Plant Reprod, (this issue)

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    Google Scholar 

  • Graumann K, Evans DE (2010) The plant nuclear envelope in focus. Biochem Soc Trans 38:307–311

    PubMed  CAS  Google Scholar 

  • Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    PubMed  Google Scholar 

  • Grossniklaus U, Spillane C, Page DR, Köhler C (2001) Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Biol 4:21–27

    PubMed  CAS  Google Scholar 

  • Guitton AE, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol 15:750–754

    PubMed  CAS  Google Scholar 

  • Guo F, Huang BQ, Han Y, Zee SY (2004) Fertilization in maize indeterminate gametophyte1 mutant. Protoplasma 223:111–120

    PubMed  Google Scholar 

  • Gutiérrez-Marcos JF, Costa LM, Evans MMS (2006) Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics 174:317–329

    Google Scholar 

  • Hackbusch J, Richter K, Müller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908–4912

    PubMed  CAS  Google Scholar 

  • Han YZ, Huang BQ, Zee SY, Yuan M (2000) Symplastic communication between the central cell and the egg apparatus cells in the embryo sac of Torenia fournieri Lind. before and during fertilization. Planta 211:158–162

    PubMed  CAS  Google Scholar 

  • Higashiyama T (2002) The synergid cell: attractor and acceptor of the pollen tube for double fertilization. J Plant Res 115:149–160

    PubMed  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    PubMed  CAS  Google Scholar 

  • Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    Google Scholar 

  • Huang BQ, Russell SD (1992) Female germ unit: organization, isolation, and function. Int Rev Cytol 140:233–293

    Google Scholar 

  • Huang BQ, Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6:845–861

    PubMed  Google Scholar 

  • Huang BQ, Sheridan WF (1996) Embryo sac development in the maize indeterminate gametophyte1 mutant: Abnormal nuclear behavior and defective microtubule organization. Plant Cell 8:1391–1407

    PubMed  CAS  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    PubMed  CAS  Google Scholar 

  • Ingouff M, Sakata T, Li J, Sprunck S, Dresselhaus T, Berger F (2009) The two male gametes share equal ability to fertilize the egg cell in Arabidopsis thaliana. Curr Biol 19:R19–R20

    PubMed  CAS  Google Scholar 

  • Iwabuchi K, Minamino R, Takagi S (2010) Actin reorganization underlies phototropin-dependent positioning of nuclei in Arabidopsis leaf cells. Plant Physiol 152:1309–1319

    PubMed  CAS  Google Scholar 

  • Iwakawa H, Shinmyo A, Sekine M (2006) Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 45:819–831

    PubMed  CAS  Google Scholar 

  • Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8:R204

    PubMed  Google Scholar 

  • Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W (2008) A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr Biol 18:1680–1686

    PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861

    PubMed  CAS  Google Scholar 

  • Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642

    Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N, Berger F (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372

    PubMed  CAS  Google Scholar 

  • Kägi C, Gross-Hardt R (2007) How females become complex: cell differentiation in the gametophyte. Curr Opin Plant Biol 10:633–638

    PubMed  Google Scholar 

  • Kägi C, Baumann N, Nielsen N, Stierhof YD, Groß-Hardt R (2010) The gametic central cell of Arabidopsis determines the lifespan of adjacent accessory cells. PNAS. doi:10.1073/pnas.1012795108

  • Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992

    PubMed  CAS  Google Scholar 

  • Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AM (2002) Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–2955

    PubMed  CAS  Google Scholar 

  • Kiesselbach TA (1998) The structure and reproduction of corn. 50th anniversary edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Google Scholar 

  • Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Google Scholar 

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    PubMed  CAS  Google Scholar 

  • Lee YRJ, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    PubMed  CAS  Google Scholar 

  • Lewis J (2008) From signals to patterns: space, time, and mathematics in developmental biology. Science 322:399–403

    PubMed  CAS  Google Scholar 

  • Liarzi O, Epel BL (2005) Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals. Protoplasma 225:67–76

    PubMed  CAS  Google Scholar 

  • Liu Y, Yan Z, Chen N, Di X, Huang J, Guo G (2010) Development and function of central cell in angiosperm female gametophyte. Genesis 48:466–478

    PubMed  CAS  Google Scholar 

  • Ma H, Sundaresan V (2010) Development of flowering plant gametophytes. Curr Top Dev Biol 91:379–412

    PubMed  CAS  Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Google Scholar 

  • Márton ML, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630

    PubMed  Google Scholar 

  • Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576

    PubMed  Google Scholar 

  • Maruyama D, Endo T, Nishikawa S (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:1684–1689

    PubMed  CAS  Google Scholar 

  • Matias-Hernandez L, Battaglia R, Galbiati F, Rubes M, Eichenberger C, Grossniklaus U, Kater MM, Colombo L (2010) VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell 22:1702–1715

    PubMed  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686

    PubMed  CAS  Google Scholar 

  • Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19:1327–1331

    PubMed  CAS  Google Scholar 

  • Moll C, von Lyncker L, Zimmermann S, Kagi C, Baumann N, Twell D, Grossniklaus U, Gross-Hardt R (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56:913–921

    PubMed  CAS  Google Scholar 

  • Moore JK, Cooper JA (2010) Coordinating mitosis with cell polarity: molecular motors at the cell cortex. Semin Cell Dev Biol 21:283–289

    PubMed  CAS  Google Scholar 

  • Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122:2208–2217

    PubMed  CAS  Google Scholar 

  • Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38:63–67

    PubMed  CAS  Google Scholar 

  • Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D (2005) A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr Biol 15:2107–2111

    PubMed  CAS  Google Scholar 

  • Okuda S, Higashiyama T (2010) Pollen tube guidance by attractant molecules: LUREs. Cell Struct Funct 35:45–52

    PubMed  CAS  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19:3578–3592

    PubMed  CAS  Google Scholar 

  • Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689

    PubMed  CAS  Google Scholar 

  • Park SK, Rahman D, Oh SA, Twell D (2004) Gemini pollen 2, a male and female gametophytic cytokinesis defective mutation. Sex Plant Reprod 17:63–70

    PubMed  CAS  Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    PubMed  CAS  Google Scholar 

  • Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769:375–382

    PubMed  CAS  Google Scholar 

  • Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006a) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18:1862–1872

    PubMed  CAS  Google Scholar 

  • Portereiko MF, Sandaklie-Nikolova L, Lloyd A, Dever CA, Otsuga D, Drews GN (2006b) NUCLEAR FUSION DEFECTIVE1 encodes the Arabidopsis RPL21 M protein and is required for karyogamy during female gametophyte development and fertilization. Plant Physiol 141:957–965

    PubMed  CAS  Google Scholar 

  • Punwani JA, Drews GN (2008) Development and function of the synergid cell. Sex Plant Reprod 21:7–15

    Google Scholar 

  • Punwani JA, Rabiger DS, Drews GN (2007) MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19:2557–2568

    PubMed  CAS  Google Scholar 

  • Punwani JA, Rabiger DS, Lloyd A, Drews GN (2008) The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J 55:406–414

    PubMed  CAS  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Roman H (1948) Selective fertilization in maize. Genetics 33:122

    PubMed  CAS  Google Scholar 

  • Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436

    PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    PubMed  CAS  Google Scholar 

  • Russell SD (1985) Preferential fertilization in Plumbago–Ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA 82:6129–6132

    PubMed  CAS  Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349–1359

    PubMed  Google Scholar 

  • Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Google Scholar 

  • Scott RJ, Armstrong SJ, Doughty J, Spielman M (2008) Double fertilization in Arabidopsis thaliana involves a polyspermy block on the egg but not the central cell. Mol Plant 1:611–619

    PubMed  CAS  Google Scholar 

  • Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374

    PubMed  CAS  Google Scholar 

  • Spielman M, Scott RJ (2008) Polyspermy barriers in plants: from preventing to promoting fertilisation. Sex Plant Reprod 21:53–65

    Google Scholar 

  • Sprunck S (2010) Let’s get physical: gamete interaction in flowering plants. Biochem Soc Trans 38:635–640

    PubMed  CAS  Google Scholar 

  • Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672

    PubMed  CAS  Google Scholar 

  • Srilunchang KO, Krohn NG, Dresselhaus T (2010) DiSUMO-like DSUL is required for nuclei positioning, cell specification and viability during female gametophyte maturation in maize. Development 137:333–345

    PubMed  CAS  Google Scholar 

  • Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosome. J Cell Sci 122:577–586

    PubMed  CAS  Google Scholar 

  • Starr DA, Fridolffson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444

    PubMed  CAS  Google Scholar 

  • Starr DA, Han M (2003) ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci 116:211–216

    PubMed  CAS  Google Scholar 

  • Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292

    PubMed  CAS  Google Scholar 

  • Steffen JG, Kang IH, Portereiko MF, Lloyd A, Drews GN (2008) AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148:259–268

    PubMed  CAS  Google Scholar 

  • Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–1211

    PubMed  CAS  Google Scholar 

  • Tiwari S, Schulz R, Ikeda Y, Dytham L, Bravo J, Mathers L, Spielman M, Guzmán P, Oakey RJ, Kinoshita T, Scott RJ (2008) MATERNALLY EXPRESSED PAB C-TERMINAL, a novel imprinted gene in Arabidopsis, encodes the conserved C-terminal domain of polyadenylate binding proteins. Plant Cell 20:2387–2398

    Google Scholar 

  • Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R (2010) A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–588

    PubMed  CAS  Google Scholar 

  • Twell, D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod, (this issue)

  • Vollbrecht E, Hake S (1995) Deficiency analysis of female gametogenesis in maize. Dev Genet 16:44–63

    Google Scholar 

  • Wang D, Zhang C, Hearn DJ, Kang IH, Punwani JA, Skaggs MI, Drews GN, Schumaker KS, Yadegari R (2010) Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte. BMC Plant Biol 10:110

    PubMed  Google Scholar 

  • Webb MC, Gunning BES (1994) Cell biology of embryo sac development in Arabidopsis. In: Williams EG, Knox RB, Clark AE (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic Publishers, Dordrecht, pp 461–485

    Google Scholar 

  • Williams JH, Friedman WE (2004) The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids, and eudicots. Am J Bot 91:332–351

    Google Scholar 

  • Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenfuhrer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    PubMed  CAS  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16(Suppl):S133–S141

    PubMed  CAS  Google Scholar 

  • Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U (2005) An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol 139:1421–1432

    PubMed  CAS  Google Scholar 

  • Yang H, Kaur N, Kiriakopolos S, McCormick S (2006) EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta 224:1004–1014

    PubMed  CAS  Google Scholar 

  • Yu HJ, Hogan P, Sundaresan V (2005) Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139:1853–1869

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Sprunck.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprunck, S., Groß-Hardt, R. Nuclear behavior, cell polarity, and cell specification in the female gametophyte. Sex Plant Reprod 24, 123–136 (2011). https://doi.org/10.1007/s00497-011-0161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-011-0161-4

Keywords

Navigation