Skip to main content
Log in

LAP3, a novel plant protein required for pollen development, is essential for proper exine formation

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

We isolated lap3-1 and lap3-2 mutants in a screen for pollen that displays abnormal stigma binding. Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine is thinner, weaker, and is missing some connections between their roof-like tectum structures. We describe the mapping and identification of LAP3 as a novel gene that contains a repetitive motif found in β-propeller enzymes. Insertion mutations in LAP3 lead to male sterility. To investigate possible roles for LAP3 in pollen development, we assayed the metabolite profile of anther tissues containing developing pollen grains and found that the lap3-2 defect leads to a broad range of metabolic changes. The largest changes were seen in levels of a straight-chain hydrocarbon nonacosane and in naringenin chalcone, an obligate compound in the flavonoid biosynthesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  PubMed  CAS  Google Scholar 

  • Ahlers F, Thom L, Lambert J, Kuckuk R, Wiermann R (1999) NMR analysis of sporopollenin from Typha augustifolia. Phytochemistry 5:1095–1098

    Article  Google Scholar 

  • Ahlers F, Bubert H, Steuernagel S, Wiermann R (2000) The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Z Naturforsch C J Biosci 55:129–136

    CAS  Google Scholar 

  • Ahlers F, Lambert J, Wiermann R (2003) Acetylation and silylation of piperidine solubilized sporopollenin from pollen of Typha angustifolia L. Z Naturforsch C J Biosci 58:807–811

    CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Ariizumi T, Toriyama K (2007) Pollen exine pattern formation is dependent on three major developmental processes in Arabidopsis thaliana. Int J Plant Dev Biol 1:106–115

    Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39:170–181

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7

    Article  CAS  Google Scholar 

  • Ariizumi T, Kawanabe T, Hatakeyama K, Sato S, Kato T, Tabata S, Toriyama K (2008) Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates. Plant Cell Physiol 49:58–67

    Article  PubMed  CAS  Google Scholar 

  • Bolick MR, Vogel S (1992) Breaking strengths of pollen grain walls. Plant Syst Evol 181:171–178

    Article  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336

    Article  PubMed  CAS  Google Scholar 

  • Bubert H, Lambert J, Steuernagel S, Ahlers F, Wiermann R (2002) Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis. Z Naturforsch C J Biosci 57:1035–1041

    CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Cigan AM, Unger E, Xu RJ, Kendall T, Fox TW (2001) Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod 14:135–142

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coe EH, McCormick SM, Modena SA (1981) White pollen in maize. J Hered 72:318–320

    Google Scholar 

  • Cox ED, Cook JM (1995) The Pictet-Spengler condensation—a new direction for an old reaction. Chem Rev 95:1797–1842

    Article  CAS  Google Scholar 

  • Dominguez E, Mercado JA, Quesada MA, Heredia A (1999) Pollen sporopollenin: degradation and structural elucidation. Sex Plant Reprod 12:171–178

    Article  CAS  Google Scholar 

  • Dong XY, Hong ZL, Sivaramakrishnan M, Mahfouz M, Verma DPS (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328

    Article  PubMed  CAS  Google Scholar 

  • Fox TW, Trimnell MR, Albertsen MC (2001) Cloning of Ms45, a gene required for male fertility from Zea mays. Trait and Technology Development, Pioneer Hi-Bred Intl. Inc. (direct submission)

  • Franken P, Niesbachklosgen U, Weydemann U, Marechaldrouard L, Saedler H, Wienand U (1991) The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated—evidence for translational control of Whp expression by the anthocyanin intensifying gene (in). EMBO J 10:2605–2612

    PubMed  CAS  Google Scholar 

  • Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147:852–863

    Article  PubMed  CAS  Google Scholar 

  • Guilford WJ, Schneider DM, Labovitz J, Opella SJ (1988) High resolution solid state 13C NMR spectroscopy of sporopollenins from different plant taxa. Plant Physiol 86:134–136

    Article  PubMed  CAS  Google Scholar 

  • Hannoufa A, McNevin J, Lemieux B (1993) Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 33:851–855

    Article  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hemsley AR, Barrie PJ, Chaloner WG, Scott AC (1993) The composition of sporopollenin and its use in living and fossil plant systematics. Grana 1:2–11

    Google Scholar 

  • Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    Article  PubMed  CAS  Google Scholar 

  • Jawad Z, Paoli M (2002) Novel sequences propel familiar folds. Structure 10:447–454

    Article  PubMed  CAS  Google Scholar 

  • Kawase M, Takahashi M (1995) Chemical-composition of sporopollenin in Magnolia grandiflora (Magnoliaceae) and Hibiscus syriacus (Malvaceae). Grana 34:242–245

    Article  Google Scholar 

  • Koepke J, Ma XY, Fritzsch U, Michel H, Stockigt J (2005) Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine. Acta Crystallogr D Biol Crystallogr 61:690–693

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (1993) Strictosidine—from alkaloid to enzyme to gene. Phytochemistry 32:493–505

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Loris EA, Panjikar S, Ruppert M, Barleben L, Unger M, Schubel H, Stockigt J (2007) Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries. Chem Biol 14:979–985

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Koepke J, Fritzsch G, Diem R, Kutchan TM, Michel H, Stockigt J (2004) Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia: the first member of a novel enzyme family. Biochim Biophys Acta Proteins Proteomics 1702:121–124

    Article  CAS  Google Scholar 

  • Ma XY, Panjikar S, Koepke J, Loris E, Stockigt J (2006) The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins. Plant Cell 18:907–920

    Article  PubMed  CAS  Google Scholar 

  • Meutergerhards A, Schwerdtfeger C, Steuernagel S, Wilmesmeier S, Wiermann R (1995) Studies on sporopollenin structure during pollen development. Z Naturforsch C J Biosci 50:487–492

    CAS  Google Scholar 

  • Meuter-Gerhards A, Riegert S, Wiermann R (1999) Studies of sporopollenin biosynthesis in Cucurbita maxima-II. The involvement of aliphatic metabolism. J Plant Physiol 154:431–436

    CAS  Google Scholar 

  • Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD (2004) Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol 135:801–813

    Article  PubMed  CAS  Google Scholar 

  • Morant M, Jorgensen K, Schaller H, Pinot F, Moller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  PubMed  CAS  Google Scholar 

  • Napoli CA, Fahy D, Wang HY, Taylor LP (1999) White anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S-i, Zinkl GM, Swanson R, Maruyama D, Preuss D (2005) Callose (β-1, 3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol 5:1–9

    Article  CAS  Google Scholar 

  • Paxson-Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198:53–65

    Article  Google Scholar 

  • Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127:1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Peschel S, Franke R, Schreiber L, Knoche M (2007) Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 68:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  PubMed  CAS  Google Scholar 

  • Rowley JR, Skvarla JJ (2000) The elasticity of the exine. Grana 39:1–7

    Article  Google Scholar 

  • Scott RJ (1994) Pollen exine: the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead MA (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, pp 49–81

    Google Scholar 

  • Scott R, Hodge R, Paul W, Draper J (1991) The molecular-biology of anther differentiation. Plant Sci 80:167–191

    Article  CAS  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Southworth D (1974) Solubility of pollen exines. Am J Bot 61:36–44

    Article  Google Scholar 

  • Stockigt J, Barleben L, Panjikar S, Loris EA (2008) 3D-Structure and function of strictosidine synthase—the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiol Biochem 46:340–355

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Masaoka K, Nishi M, Nakamura K, Ishiguro S (2008) Identification of kaonashi mutants showing abnormal pollen exine structure in Arabidopsis thaliana. Plant Cell Physiol 49(146):5–77

    Google Scholar 

  • Vandermeer IM, Stam ME, Vantunen AJ, Mol JNM, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male-sterility. Plant Cell 4:253–262

    Article  CAS  Google Scholar 

  • von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769

    Article  CAS  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male-sterility in transgenic tobacco. Plant Cell 4:759–771

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  • Zinkl GM, Preuss D (2000) Dissecting Arabidopsis pollen-stigma interactions reveals novel mechanisms that confer mating specificity. Ann Bot 85:15–21

    Article  Google Scholar 

  • Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Science Foundation MCB-0520283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Swanson.

Additional information

Communicated by David Twell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobritsa, A.A., Nishikawa, SI., Preuss, D. et al. LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. Sex Plant Reprod 22, 167–177 (2009). https://doi.org/10.1007/s00497-009-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0101-8

Keywords

Navigation