Skip to main content

Advertisement

Log in

A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health

  • Review Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Climate and weather directly impact plant phenology, affecting airborne pollen. The objective of this systematic review is to examine the impacts of meteorological variables on airborne pollen concentrations and pollen season timing. Using PRISMA methodology, we reviewed literature that assessed whether there was a relationship between local temperature and precipitation and measured airborne pollen. The search strategy included terms related to pollen, trends or measurements, and season timing. For inclusion, studies must have conducted a correlation analysis of at least 5 years of airborne pollen data to local meteorological data and report quantitative results. Data from peer-reviewed articles were extracted on the correlations between seven pollen indicators (main pollen season start date, end date, peak date, and length, annual pollen integral, average daily pollen concentration, and peak pollen concentration), and two meteorological variables (temperature and precipitation). Ninety-three articles were included in the analysis out of 9,679 articles screened. Overall, warmer temperatures correlated with earlier and longer pollen seasons and higher pollen concentrations. Precipitation had varying effects on pollen concentration and pollen season timing indicators. Increased precipitation may have a short-term effect causing low pollen concentrations potentially due to “wash out” effect. Long-term effects of precipitation varied for trees and weeds and had a positive correlation with grass pollen levels. With increases in temperature due to climate change, pollen seasons for some taxa in some regions may start earlier, last longer, and be more intense, which may be associated with adverse health impacts, as pollen exposure has well-known health effects in sensitized individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data extracted from the systematic review is maintained by the CDC and available to the public.

Code availability

Analysis was completed in Microsoft Excel; spreadsheets are available to the public.

References

  • Åberg N, Hesselmar B, Åberg B, Eriksson B (1995) Increase of asthma, allergic rhinitis and eczema in Swedish schoolchildren between 1979 and 1991. Clin Exp Allergy 25:815–819

    Article  Google Scholar 

  • Aguilera F, Orlandi F, Ruiz-Valenzuela L, Msallem M, Fornaciari M (2015) Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure. Agric For Meteorol 203:208–216

    Article  Google Scholar 

  • Albertine JM, Manning WJ, DaCosta M, Stinson KA, Muilenberg ML, Rogers CA (2014) Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS One 9:e111712

    Article  CAS  Google Scholar 

  • Ariano R, Canonica GW, Passalacqua G (2010) Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol 104:215–222. https://doi.org/10.1016/j.anai.2009.12.005

    Article  Google Scholar 

  • Bastl K, Kmenta M, Berger M, UJWAOJ B (2018) The connection of pollen concentrations and crowd-sourced symptom data: new insights from daily and seasonal symptom load index data from 2013 to 2017 in Vienna. World Allergy Organ 11:1–8

    CAS  Google Scholar 

  • Beck I et al (2013) High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS One 8:e80147

    Article  Google Scholar 

  • Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513

    Article  CAS  Google Scholar 

  • Beggs PJ, Bambrick HJ (2006) Is the global rise of asthma an early impact of anthropogenic climate change? Ciência & Saúde Coletiva 11:745–752

    Article  Google Scholar 

  • Bellomo R, Gigliotti P, Treloar A, Holmes P, Suphioglu C, Singh M, Knox B (1992) Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne The possible role of rye grass pollen. Med J Aust 156:834–837

    Article  CAS  Google Scholar 

  • Bernard SM, Samet JM, Grambsch A, Ebi KL, Romieu I (2001) The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ Health Perspect 109:199–209

    CAS  Google Scholar 

  • Bielory L, Lyons K, Goldberg R (2012) Climate change and allergic disease. Curr Allergy Asthma Rep 12:485–494

    Article  CAS  Google Scholar 

  • Black LI, Benson V (2019) Tables of Summary Health Statistics for U.S. Children: 2018 National Health Interview Survey. Available from: https://www.cdc.gov/nchs/nhis/SHS/tables.htm

  • Breton M-C, Garneau M, Fortier I, Guay F, Louis J (2006) Relationship between climate, pollen concentrations of Ambrosia and medical consultations for allergic rhinitis in Montreal, 1994–2002. Sci Total Environ 370:39–50. https://doi.org/10.1016/j.scitotenv.2006.05.022

    Article  CAS  Google Scholar 

  • Bromenshenk JJ, Carlson SR, Simpson JC, Thomas JM (1985) Pollution monitoring of Puget Sound with honey bees. Science, USA 227:632–634

    CAS  Google Scholar 

  • Bunyavanich S, Landrigan CP, McMichael AJ, Epstein PR (2003) The impact of climate change on child health. Ambul Pediatr 3:44–52. https://doi.org/10.1367/1539-4409(2003)003<0044:TIOCCO>2.0.CO;2

    Article  Google Scholar 

  • Cakmak S, Dales RE, Burnett RT, Judek S, Coates F, Brook JR (2002) Effect of airborne allergens on emergency visits by children for conjunctivitis and rhinitis. Lancet 359:947–948. https://doi.org/10.1016/S0140-6736(02)08045-5

    Article  Google Scholar 

  • Carracedo-Martinez E, Sanchez C, Taracido M, Saez M, Jato V, Figueiras A (2008) Effect of short-term exposure to air pollution and pollen on medical emergency calls: a case-crossover study in Spain. Allergy 63:347–353

    Article  CAS  Google Scholar 

  • Cirera L et al (2012) Daily effects of air pollutants and pollen types on asthma and COPD hospital emergency visits in the industrial and Mediterranean Spanish city of Cartagena. Allergol Immunopathol 40:231–237. https://doi.org/10.1016/j.aller.2011.05.012

    Article  CAS  Google Scholar 

  • Corden J, Millington W (1999) A study of Quercus pollen in the Derby area, UK. Aerobiologia 15:29–37

    Article  Google Scholar 

  • Council for State and Territorial Epidemiologists (CSTE) (2016) Developing a national aeroallergen tracking network. doi:http://c.ymcdn.com/sites/www.cste.org/resource/resmgr/2016PS/16_EH_01.pdf. Accessed 16 Apr 2021

  • D’Amato G, Liccardi G, Frenguelli G (2007a) Thunderstorm-asthma and pollen allergy. Allergy 62:11–16

    Article  Google Scholar 

  • D’Amato G et al (2007b) Allergenic pollen and pollen allergy in Europe. Allergy 62:976–990. https://doi.org/10.1111/j.1398-9995.2007.01393.x

    Article  CAS  Google Scholar 

  • D’Amato G et al (2013) Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip respir med 8:12

    Article  Google Scholar 

  • D’Amato G, Cecchi L, D’Amato M, Annesi-Maesano I (2014) Climate change and respiratory diseases. Eur Respir Rev 23:161

    Article  Google Scholar 

  • D'Amato G, Liccardi G, D'Amato M, Cazzola M (2001) The role of outdoor air pollution and climatic changes on the rising trends in respiratory allergy. Respir Med 95:606–611. https://doi.org/10.1053/rmed.2001.1112

    Article  CAS  Google Scholar 

  • Darrow L, Hess J, Rogers CA, Tolber PE, Klein M, Sarnat SE (2011) Ambient pollen concentrations and emergency department visits for asthma and wheeze. J Allergy Clin Immunol 130:630–638

    Article  Google Scholar 

  • Díaz J, Linares C, Tobías A (2007) Short-term effects of pollen species on hospital admissions in the city of Madrid in terms of specific causes and age. Aerobiologia 23:231–238. https://doi.org/10.1007/s10453-007-9067-x

    Article  Google Scholar 

  • Donders TH, Hagemans K, Dekker SC, de Weger LA, De Klerk P, Wagner-Cremer F (2014) Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation. PLoS One 9:e104774

    Article  CAS  Google Scholar 

  • Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones SJG (1997) The trend to earlier birch pollen seasons in the UK: a biotic response to changes in weather conditions? Grana 36:29–33

    Article  Google Scholar 

  • Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimäki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170. https://doi.org/10.1007/s00484-002-0139-x

    Article  CAS  Google Scholar 

  • Fann N et al (2016) Ch. 3: Air quality impacts. U.S. Global Change Research Program, Washington. https://doi.org/10.7930/J0GQ6VP6

    Book  Google Scholar 

  • Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006. Int J Biometeorol 52:667–674. https://doi.org/10.1007/s00484-008-0159-2

    Article  Google Scholar 

  • Frenz DA (1999) Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann Allergy Asthma Immunol 83:341–349. https://doi.org/10.1016/S1081-1206(10)62828-1

    Article  CAS  Google Scholar 

  • Galán I et al (2010) Association between airborne pollen and epidemic asthma in Madrid, Spain: a case–control study. Thorax 65:398–402

    Article  Google Scholar 

  • García-Mozo H et al (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209

    Google Scholar 

  • García-Mozo H, Oteros J, Galán C (2015) Phenological changes in olive (Ola europaea L.) reproductive cycle in southern Spain due to climate change. Ann Agric and Environ Med 22(3):421–428

    Article  Google Scholar 

  • Ghiani A, Ciappetta S, Gentili R, Asero R, Citterio S (2016) Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering? Sci Rep 6:30438

    Article  CAS  Google Scholar 

  • Grammer L, Greenberger P (eds) (2009) Patterson's allergic diseases, 7th edn. Wolters Kluwer, New York

    Google Scholar 

  • Grundstein A, Sarnat SE, Klein M, Shepherd M, Naeher L, Mote T, Tolbert P (2008) Thunderstorm associated asthma in Atlanta. Georgia Thorax 63:659–660

    Article  CAS  Google Scholar 

  • Guide to Community Preventive Servces (2017) Our methodology. The Community Guide. https://www.thecommunityguide.org/about/our-methodology. Accessed April 1, 2016

  • Hajkova L, Koznarova V, Mozny M, Bartosova L (2015) Changes in flowering of birch in the Czech Republic in recent 25 years (1991–2015) in connection with meteorological variables. Acta Agrobot 68(4):285–302

    Article  Google Scholar 

  • Hamaoui-Laguel L et al (2015) Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Chang 5:766–771

    Article  Google Scholar 

  • Hamid N, Ali SM, Talib F, Sadiq I, Ghufran MA (2015) Spatial and temporal variations of pollen concentrations in Islamabad (Pakistan): effect of meteorological parameters and impact on human health. Grana 54:53–67

    Article  Google Scholar 

  • Hanigan IC, Johnston FH (2007) Respiratory hospital admissions were associated with ambient airborne pollen in Darwin, Australia, 2004–2005. Clin Exp Allergy 37:1556–1565. https://doi.org/10.1111/j.1365-2222.2007.02800.x

    Article  CAS  Google Scholar 

  • Heguy L, Garneau M, Goldberg MS, Raphoz M, Guay F, Valois M-F (2008) Associations between grass and weed pollen and emergency department visits for asthma among children in Montreal. Environ Res 106:203–211. https://doi.org/10.1016/j.envres.2007.10.005

    Article  CAS  Google Scholar 

  • Higgins JPT, Lasserson T, Chandler J, Tovey D, Churchill R (2016) Methodological expectations of Cochrane intervention reviews. London: Cochrane, 5. Chicago

  • Jato V, Rodríguez-rajo FJ, Fernandez-gonzález M, Aira MJ (2015) Assessment of Quercus flowering trends in NW Spain. Int J Biometeorol 59:517–531. https://doi.org/10.1007/s00484-014-0865-x

    Article  CAS  Google Scholar 

  • Khan KS, Kunz R, Kleijnen J, Antes G (2003) Five steps to conducting a systematic review. J R Soc Med 96:118–121

    Article  Google Scholar 

  • Kim S-H, Park H-S, Jang J-Y (2011) Impact of meteorological variation on hospital visits of patients with tree pollen allergy. BMC Public Health 11:890. https://doi.org/10.1186/1471-2458-11-890

    Article  Google Scholar 

  • Kosisky SE (2010) Pollen aeroallergens in the Washington, DC, metropolitan area: a 10-year volumetric survey (1998-2007) (vol 104, pg 223, 2010). Ann Allergy Asthma Immunol 104:545–545

    Article  Google Scholar 

  • Koubouris GC, Metzidakis IT, Vasilakakis MD (2009) Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ Exp Bot 67:209–214. https://doi.org/10.1016/j.envexpbot.2009.06.002

    Article  Google Scholar 

  • Lake I et al. (2016) Climate change and future pollen allergy in Europe. Environ Health Perspect

  • Leth-Møller KB, Skaaby T, AJA L (2020) Allergic rhinitis and allergic sensitisation are still increasing among Danish adults. Allergy 75:660–668

    Article  Google Scholar 

  • Li J, Wang HY, Zhang ZG (2008) Association between airborne pollen concentrations and human respiratory diseases. J Environ Health 25:510–513

    CAS  Google Scholar 

  • Linneberg A, Jørgensen T, Nielsen N, Madsen F, Frølund L, Dirksen A (1999) Increasing prevalence of allergic rhinitis symptoms in an adult Danish population. Allergy 54:1194–1198

    Article  CAS  Google Scholar 

  • Luber G et al. (2014) Ch. 9: Human health. doi:https://doi.org/10.7930/J0PN93H5

  • McDonald JE (1962) Collection and washout of airborne pollens and spores by raindrops. Science 135:435–437

    Article  CAS  Google Scholar 

  • Medek DE et al (2016) Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand. Aerobiologia 32:289–302. https://doi.org/10.1007/s10453-015-9399-x

    Article  Google Scholar 

  • Menzel A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Mesa JS, Brandao R, Lopes L, Galan C (2005) Correlation between pollen counts and symptoms in two different areas of the Iberian Peninsula: Cordoba (Spain) and Evora (Portugal). J Investig Allergol Clin Immunol 15:112–116

    Google Scholar 

  • Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). J Chin Integr Med 7:889–896

    Article  Google Scholar 

  • Mothes N, Horak F, Valenta R (2004) Transition from a botanical to a molecular classification in tree pollen allergy: implications for diagnosis and therapy. Int Arch Allergy Immunol 135:357–373

    Article  CAS  Google Scholar 

  • Murray MG, Galan C (2016) Effect of the meteorological parameters on the Olea europaea L. pollen season in Bahia Blanca (Argentina). Aerobiologia 32:541–553. https://doi.org/10.1007/s10453-016-9431-9

    Article  Google Scholar 

  • Orazzo F et al (2009) Air pollution, aeroallergens, and emergency room visits for acute respiratory diseases and gastroenteric disorders among young children in six Italian cities. Environ Health Perspect 117(11):1780–1785

    Article  CAS  Google Scholar 

  • Pérez CF, Gassmann MI, Covi MJA (2009) An evaluation of the airborne pollen–precipitation relationship with the superposed epoch method. Aerobiologia 25:313–320

    Article  Google Scholar 

  • Rice MB, Thurston GD, Balmes JR, Pinkerton KE (2014) Climate change. A global threat to cardiopulmonary health. Am J Respir Crit Care Med 189:512–519. https://doi.org/10.1164/rccm.201310-1924PP

    Article  Google Scholar 

  • Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114(6):865–869

    Article  CAS  Google Scholar 

  • Rojo J, Rapp A, Lara B, Fernández-González F, Pérez-Badia R (2015) Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Sci Total Environ 538:672–682

    Article  CAS  Google Scholar 

  • Shah R, Grammer LC (2012) An overview of allergens. Allergy Asthma Proc 33:S2–S5

  • Shea KM, Truckner RT, Weber RW, Peden DB (2008) Climate change and allergic disease. J Allergy Clin Immunol 122:443–453

    Article  Google Scholar 

  • Sheffield P, Weinberger K, Ito K, Matte T, Mathes R, Robinson G, Kinney P (2011) The association of tree pollen concentration peaks and allergymedication sales in New York City: 2003–2008. Allergy 2011:537194

    Google Scholar 

  • Silverberg JI, Braunstein M, Lee-Wong M (2015) Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States. J Allergy Clin Immunol 135:463–469. https://doi.org/10.1016/j.jaci.2014.08.003

    Article  Google Scholar 

  • Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG (2005) Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO 2 concentration. Funct Plant Biol 32:667–670

    Article  CAS  Google Scholar 

  • Stennett PJ, Beggs PJ (2004) Pollen in the atmosphere of Sydney, Australia, and relationships with meteorological parameters. Grana 43:209–216. https://doi.org/10.1080/00173130410000758

    Article  Google Scholar 

  • Teranishi H, Kenda Y, Katoh T, Kasuya M, Oura E, Taira H (2000) Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Clim Res 14:65

    Article  Google Scholar 

  • Teranishi H, Katoh T, Kenda K, Hayashi SJA (2006) Global warming and the earlier start of the Japanese-cedar (Cryptomeria japonica) pollen season in Toyama, Japan. Aerobiologia 22:90–94

    Article  Google Scholar 

  • Toro R, Córdova A, Canales M, Mardones P (2015) Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile. PLoS One 10:e0123077

    Article  CAS  Google Scholar 

  • Tseng Y-T, Kawashima SJAE (2019) Applying a pollen forecast algorithm to the Swiss Alps clarifies the influence of topography on spatial representativeness of airborne pollen data. Atmos Environ 212:153–162

    Article  CAS  Google Scholar 

  • USGCRP (2016) The impacts of climate change on human health in the United States: a scientific assessment. US Global Change Research Program, Washington, p 2016

    Google Scholar 

  • Villarroel MA, Blackwell DL, Jen A (2019) Tables of Summary Health Statistics for U.S. Adults: 2018 National Health Interview Survey. National Center for Health Statistics. Available from: http://www.cdc.gov/nchs/nhis/SHS/tables.htm

  • Wallace DV et al (2008) The diagnosis and management of rhinitis: an updated practice parameter. J Allergy Clin Immunol 122:S1–S84. https://doi.org/10.1016/j.jaci.2008.06.003

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y (2002) Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. Am J Bot 89:1843–1846

    Article  Google Scholar 

  • White JF, Bernstein DI (2003) Key pollen allergens in North America. Ann Allergy Asthma Immunol 91:425–435. https://doi.org/10.1016/S1081-1206(10)61509-8

    Article  Google Scholar 

  • Whitlock C, Bartlein PJ (1997) Vegetation and climate change in Northwest America during the past 125 kyr. Nature 388:57–61

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang LJA (2019) Increasing prevalence of allergic rhinitis in China. Allergy, Asthma Immunol Res 11:156–169

    Article  Google Scholar 

  • Zhang Y, Bielory L, Georgopoulos P (2014) Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. Int J Biometeorol 58:909–919. https://doi.org/10.1007/s00484-013-0674-7

    Article  Google Scholar 

  • Zhang Y, Bielory L, Mi Z, Cai T, Robock A, Georgopoulos P (2015) Allergenic pollen season variations in the past two decades under changing climate in the United States. Glob Chang Biol 21:1581–1589. https://doi.org/10.1111/gcb.12755

    Article  CAS  Google Scholar 

  • Zhao F et al (2016) Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. Plant Cell Environ 39:147–164

    Article  CAS  Google Scholar 

  • Ziello C, Böck A, Estrella N, Ankerst D, Menzel A (2012) First flowering of wind-pollinated species with the greatest phenological advances in Europe. Ecography 35:1017–1023. https://doi.org/10.1111/j.1600-0587.2012.07607.x

    Article  Google Scholar 

  • Ziska LH, Beggs PJ (2012) Anthropogenic climate change and allergen exposure: the role of plant biology. J Allergy Clin Immunol 129:27–32. https://doi.org/10.1016/j.jaci.2011.10.032

    Article  Google Scholar 

  • Ziska L, Gebhard D, Frenz D, Faulkner S, Singer B, Straka J (2003) Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol 111:290–295. https://doi.org/10.1067/mai.2003.53

    Article  Google Scholar 

  • Ziska L et al (2011) Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci 108:4248–4251. https://doi.org/10.1073/pnas.1014107108

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Emmanuelle Hines, Leila Atalla, and Katy Gerber for their assistance.

Funding

This work was supported by the Climate and Health Program at the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Contributions

Schramm, P. J. initiated the concept and led the study design, data extraction, data analysis, and writing and editing of the manuscript.

Brown, C. L. led the study design, data extraction, data analysis, development of visualizations, and writing and editing of the manuscript.

Saha, S; Conlon, KC; Manangan, AP; Bell, JE; and Hess, JJ contributed to study design, data extraction, and manuscript writing.

Corresponding author

Correspondence to P. J. Schramm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Disclaimer

The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schramm, P.J., Brown, C.L., Saha, S. et al. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Int J Biometeorol 65, 1615–1628 (2021). https://doi.org/10.1007/s00484-021-02128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-021-02128-7

Keywords

Navigation