Skip to main content
Log in

Assessment of Quercus flowering trends in NW Spain

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This paper sought to chart airborne Quercus pollen counts over the last 20 years in the region of Galicia (NW Spain) with a view to detecting the possible influence of climate change on the Quercus airborne pollen season (APS). Pollen data from Ourense, Santiago de Compostela, Vigo and Lugo were used. The Quercus airborne pollen season was characterized in terms of the following parameters: pollen season start and end dates, peak pollen count, pollen season length and pollen index. Several methods, dates and threshold temperatures for determining the chill and heat requirements needed to trigger flowering were applied. A diverse APS onset timing sequence was observed for the four cities as Quercus flowers few days in advance in Vigo. The variations observed could be related to differences in the meteorological conditions or the thermal requirements needed for flowering. Thermal requirements differed depending on local climate conditions in the study cities: the lowest values for chilling accumulation were recorded in Vigo and the highest in Lugo, whereas the lowest heat accumulation was achieved in Vigo. Differences in APS trends between cities may reflect variations in weather-related trends. A significant trend towards rising Quercus pollen indices and higher maximum daily mean pollen counts was observed in Ourense, linked to the more marked temperature increase across southern Galicia. A non-uniform trend towards increased temperatures was noted over the study period, particularly in late summer and early autumn in all four study cities. Additionally, an increase in spring temperatures was observed in south-western Galicia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Article  Google Scholar 

  • Arenas L, González C, Tabarés JM, Iglésias I, Méndez J, Jato V (1996) Sensibilización cutánea a pólenes en pacientes afectos de rinoconjuntivitis-asma en la población de Ourense en el año 1994–95. 1st. European Symp on Aerobiol. Santiago de Compostela 93–94

  • Aron R (1983) Availability of chilling temperatures in California. Agric Meteorol 28:351–363

    Article  Google Scholar 

  • Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34(10):1507–1513

    Article  CAS  Google Scholar 

  • Breton MC, Garneau M, Fortier I, Guay F, Louis J (2006) Relationship between climate, pollen concentrations of Ambrosia and medical consultations for allergic rhinitis in Montreal, 1994. Sci Total Environ 370:39–50

    Article  CAS  Google Scholar 

  • Carballeira A, Devesa C, Retuerto R, Santillán E, Ucieda F (1983) Bioclimatología de Galicia. Fund. P. Barrié de la Maza, La Coruña

  • Cecchi L, D’Amato G, Ayres JG, Galán C, Forastiere F, Forsberg B, Gerritsen J, Nunes C, Behrendt H, Akdis C, Dahl R, Annesi-Maesano I (2010) Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 65:1073–1081

    CAS  Google Scholar 

  • Chuine I, Cour P (1999) Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol 143:339–349

    Article  Google Scholar 

  • Chuine I, Cor P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466

    Article  Google Scholar 

  • Dacosta N (2005) Fenología y Aerobiología de Quercus y Betula en la provincia de Ourense. PhD Thesis. University of Vigo

  • Darrow LA, Hess JH, Rogers CA, Tolbert PE, Klein M, Sarnat SE (2012) Ambient pollen concentrations and emergency department visits for asthma and wheeze. J Allergy Clin Immunol 130(3):630–638

    Article  Google Scholar 

  • Emberlin J, Smith M (2006) A 30 day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242. doi:10.1007/s00484-005-0010-y

    Article  Google Scholar 

  • Emberlin E, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones S (1997) The trend to earlier birch pollen seasons in the UK: A biotic response to changes in weather conditions? Grana 36:29–33

    Article  Google Scholar 

  • Emberlin J, Jäeger S, Dominguez E, Galán C, Hodal L, Mandrioli P, Rantio-Lehtimäki A, Savage M, Spieksma FT, Barlett C (2000) Temporal and geographical variations in grass pollen seasons in areas of Western Europe: an analysis of season dates at sites of the European pollen information system. Aerobiologia 16:373–379

    Article  Google Scholar 

  • Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen season to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170

    Article  CAS  Google Scholar 

  • Ferreiro M, Núñez M, Rico A, Soto T, López R (1998) Pólenes alergénicos y polinosis en el área de A Coruña. Rev Esp de Alergol e Inmunol Clín 13:98–101

    Google Scholar 

  • Frei T (1998) The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grasses. Grana 37:172–179

    Article  Google Scholar 

  • Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol 52(7):667–674

    Article  Google Scholar 

  • Frenguelli G, Bricchi E (1998) The use of pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia 14:39–44

    Article  Google Scholar 

  • Frenguelli G, Bricchi E, Romano B, Ferranti MF, Antognozzi E (1992) The role of the air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia 8:415–418

    Article  Google Scholar 

  • Galán C, Cariñanos P, Alcázar P, Domínguez-Vilches E (2007) Spanish aerobiological network: management and quality control. Servicio de Publicaciones University of Córdoba, Córdoba, Spain

    Google Scholar 

  • García-Mozo H (2011) The use of aerobiological data on agronomical studies. Ann Agric Environ Med 18:1–6

    Google Scholar 

  • García-Mozo H, Galán C, Aira MJ, Belmonte J, Díaz de la Guardia C, Fernández D et al (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric For Meteorol 110:247–257

    Article  Google Scholar 

  • García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, Domínguez-Vilches E (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224

    Google Scholar 

  • García-Mozo G, Chuine I, Aira MJ, Belmonte J, Bermejo D, Díaz de la Guardia C, Elvira B, Gutiérrez M, Rodríguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galán C (2008) Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric For Meteorol 148:372–380

    Article  Google Scholar 

  • Gomez-Casero MT, Hidalgo P, García-Mozo H, Domínguez E, Galán C (2004) Pollen biology in four Mediterranean Quercus species. Grana 43:22–30

    Article  Google Scholar 

  • Gordo O, Sanz JV (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Chang Biol 15(8):1930–1948

    Article  Google Scholar 

  • Grewling L, Sikoparija B, Skjoth CA, Radisic P, Apatini D, Magyar D, Paldy A, Yankova R, Sommer J, Kasprzyk I, Myszkowska D, Uruska A, Zimny M, Puc M, Jäger S, Smith M (2012) Variation in Artemisia pollen seasons in Central and Eastern Europe. Agric For Meteorol 160:48–59

    Article  Google Scholar 

  • Hidalgo PJ, Martín JM, Quijada J, Moreira JM (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manag 225:25–34

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore-trap. Ann Appl Biol 36:257–265

    Article  Google Scholar 

  • Ibañez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Don Lee S, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Phil Trans R Soc B 365:3247–3260. doi:10.1098/rstb.2010.0120

    Article  Google Scholar 

  • Ickovic M, Thibaudon M (1991) Allergenic significance of Fagaceae pollen. In: D’Amato, Spieksma F, Bonini S (ed) Allergenic pollen and pollinosis in Europe, Oxford

  • IPPC (2013) Summary for Policymarkers. In: Stovker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA

    Google Scholar 

  • Izco J (1994) O bosque Atlántico. In: Vales C (ed) Os Bosques Atlánticos Europeos. Bahía, La Coruña, pp 13–49

  • Jato V, Frenguelli G, Rodríguez-Rajo FJ, Aira MJ (2000) Temperature requirements of Alnus pollen in Spain and Italy (1994–1998). Grana 39:240–245

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Méndez J, Aira MJ (2002) Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Int J Biometeorol 46:176–184

    Article  CAS  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Dacosta N, Aira MJ (2004) Heat and chill requirements of Fraxinus flowering in Galicia (NW Spain). Grana 43:217–223

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Alcázar P, De Nuntiis P, Galán C, Mandrioli P (2006) May the definition of pollen season influence aerobiological results? Aerobiologia 22:13–25

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Aira MJ (2007) Use of Quercus ilex subsp. ballota phenological and pollen-production data for interpreting Quercus pollen curves. Aerobiologia 23:91–105

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Seijo MC, Aira MJ (2009) Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season. Int J Biometeorol 53(3):333–344. doi:10.1007/s00484-009-0220-9

    Article  CAS  Google Scholar 

  • Jato MV, Rodríguez-Rajo FJ, Aira MJ, Tedeschini E, Frenguelli G (2012) Differences in atmospheric trees pollen seasons in winter, spring and summer in two European geographic areas, Spain and Italy. Aerobiologia 29(2):263–278. doi:10.1007/S10453-012-9278-7

    Article  Google Scholar 

  • Laaidi M (2001) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45:1–7

    Article  CAS  Google Scholar 

  • Levetin E (2001) Effects of climate change on airborne pollen. J Allergy Clin Immunol 107:172

    Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Montero JL, González JL (1983) Diagramas bioclimáticos. Instituto Nacional para la conservación de la, Naturaleza, Madrid

    Google Scholar 

  • Moore PP, Webb JA (1983) An illustrated guide to pollen analysis 2. Blackwell Sci Publ, Great Britain

    Google Scholar 

  • Perez Muñuzuri V, Fernández Cañamero M, Gomez-Gesteira JR (coor.) (2009) Evidencias del Cambio Climático en Galicia. Xunta de Galicia

  • Pérez-Badia R, Bouso V, Rojo J, Vaquero C, Sabariego S (2013) Dynamics and behaviour of airborne Quercus pollen in central Iberian Peninsula. Aerobiologia. doi:10.1007/s10453-013-9294-2

    Google Scholar 

  • Peteet D (2000) Sensitivity and rapidity of vegetational response to abrupt climate change. Proc Natl Acad Sci U S A 97:1359–1361

    Article  CAS  Google Scholar 

  • Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577

    Article  Google Scholar 

  • Recio M, Rodríguez-Rajo FJ, Jato V, Trigo MM, Cabezudo B (2009) The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Málaga and Vigo. Clim Chang 97:215–228

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331

    Article  CAS  Google Scholar 

  • Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. Ministerio de Agricultura, Pesca y Alimentación. Serie Técnica, Madrid, Icona

  • Rodríguez-Rajo FJ, Frenguelli G, Jato MV (2003) Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). Int J Biometeorol 47:117–125

    Google Scholar 

  • Rodríguez-Rajo FJ, Dopazo A, Jato V (2004) Environmental factors affecting the start of pollens season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med 11:35–44

    Google Scholar 

  • Rodríguez-Rajo FJ, Méndez J, Jato V (2005) Factors affecting pollination ecology of Quercus anemophilous species in northwest Spain. Bot J Linnean Soc 149:283–297

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Fernández-González D, Vega-Maray A, Suárez FJ, Valencia-Barrera RM, Jato V (2006) Biometeorological characterization of the winter in northwest Spain based on Alnus pollen flowering. Grana 45:288–296

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Aira MJ, Fernández-González M, Seijo C, Jato V (2010) Recent trends in airborne pollen for tree species in Galicia, NW Spain. Clim Res 48:281–291

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Jato V, González-Parrado Z, Elvira-Rendueles B, Moreno-Grau S, Vega-Maray A, Fernández-González D, Asturias J, Suárez-Cervera M (2011) The combination of airborne pollen and allergen quantification to reliably assess the real pollinosis risk in different bioclimatic areas. Aerobiol 27:1–12

    Article  Google Scholar 

  • Rogers Ch A, Wayne PM, Macklin EA, Muilenberg ML, Wagner Ch J, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114(6):865–869

    Article  Google Scholar 

  • Sánchez-Mesa JA, Smith M, Emberlin J, Allitt U, Caulton E, Galán C (2003) Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia 19:243–250. doi:10.1023/B:AERO. 0000006597.44452.a3

  • Schueler S, Schlünzen KH (2006) Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179–194

    Article  Google Scholar 

  • Shea KM, Truckner RT, Weber RW, Peden DB (2008) Climate change and allergic disease. J Allergy Clin Immunol 122(3):443–453. doi:10.1016/j.jaci.2008.06.032

    Article  Google Scholar 

  • Spieksma FTM, Emberlin JC, Hjelmroos M, Jäger S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57

    Article  Google Scholar 

  • Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Watcher R, de Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica and Artemisia). At five pollen-monitoring stations in Western Europe. Aerobiologia 19:171–184

    Article  Google Scholar 

  • Stach A, García-Mozo H, Prieto-Baena JC, Czarnecka-Operacz M, Jenerowicz D, Sihy W et al (2007) Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. J Investig Allergol Clin Immunol 17:39–47

    CAS  Google Scholar 

  • Tormo R, Muñoz A, Silva I, Gallardo F (1996) Pollen production in anemophilous trees. Grana 35:38–46

    Article  Google Scholar 

  • Weber RW (2002) Mother nature strikes back: global warming, homeostasis, and the implications for allergy. Ann Allergy Asthma Immunol 88:251–252

    Article  Google Scholar 

  • Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168

    Article  Google Scholar 

  • Wielgolaski FE (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202

    Article  CAS  Google Scholar 

  • Wielgolaski FE (2003) Climatic factors governing plant phenological phases along a Norwegian fjord. Int J Biometeorol 47:213–220

    Article  CAS  Google Scholar 

  • Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC et al (2012) Changes to airborne pollen counts across Europe. PLoS ONE 7(4):e34076. doi:10.1371/journal.pone.0034076

    Article  CAS  Google Scholar 

  • Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27(10):893–898

    Google Scholar 

  • Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG (2003) Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol 111(2):290–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Rodríguez-Rajo.

Additional information

Highlights

Airborne Quercus pollen count study over the last 20 years in the NW Spain with a view to detecting the possible influence of climate change.

A trend to an increase of the Quercus pollen was observed in Ourense.

A non-uniform heating through the year in the studied years was observed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jato, V., Rodríguez-Rajo, F.J., Fernandez-González, M. et al. Assessment of Quercus flowering trends in NW Spain. Int J Biometeorol 59, 517–531 (2015). https://doi.org/10.1007/s00484-014-0865-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0865-x

Keywords

Navigation