Skip to main content
Log in

The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Malaga (Mediterranean coast) and Vigo (Atlantic coast) are representative of two bioclimatically different areas belonging to the Mediterranean and the Eurosiberian region, respectively. This contribution represents a study on recent trends in the principal meteorological parameters in these areas and their influence on the phenology of Urticaceae (nettle family) atmospheric pollen, one of the main causes of pollinosis in Spain. The study covers the period 1991–2006 for Malaga and 1995–2005 for Vigo, and compares the differences in climate and phenological behaviour observed at both localities. The sampling of atmospheric pollen was performed with Hirst volumetric pollen traps. The two localities present different tendencies as far as temperature is concerned: while the mean annual temperature in the Mediterranean region has increased by 0.06°C/year, the same parameter has decreased in the Atlantic area by 0.1°C/year. This tendency is even more pronounced as far as the minimum temperatures are concerned, especially during spring in Malaga and autumn in Vigo. On the other hand, wind speed has tended to increase, periods of calm have diminished and winds blowing off the sea have increased in both places. These changes in meteorological parameters have advanced the end of the pollen season in Malaga and delayed its start in Vigo. Total annual pollen counts have decreased in Vigo, while the number of pollen-free days has increased in both areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513

    Article  Google Scholar 

  • Bond W, Davies G, Turner R (2007) The biology and non-chemical control of common nettle (Urtica dioica L.). http://www.gardenorganic.org.uk/organicweeds/downloads/urtica%20dioica.pdf. Cited 20 Oct 2007

  • Bortenschlager S, Bortenschlager I (2005) Altering airborne pollen concentrations due to the Global Warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001. Grana 44:172–180

    Article  Google Scholar 

  • Carballeira A, Devesa C, Retuerto R, Santillan E, Ucieda E (1983) Bioclimatología de Galicia. Fud Barrié de la Maza, La Coruña

    Google Scholar 

  • Clot B (2001) Airborne birch pollen in Neuchatel (Switzerland): onset, peak and daily patterns. Aerobiologia 17:25–29

    Article  Google Scholar 

  • Clot B (2003) Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia 19:227–234

    Article  Google Scholar 

  • D’Amato G, Spieksma FThM (1991) Allergenic pollen in Europe. Grana 30:67–70

    Article  Google Scholar 

  • D’Amato G, Ruffilli A, Sacerdoti G, Bonini S (1992) Parietaria pollinosis: a review. Allergy 47:443–449

    Article  Google Scholar 

  • Domínguez E (1992) The Spanish aerobiology network. Aerobiologia 8:45–46

    Google Scholar 

  • Domínguez E, Galán C, Villamandos F, Infante F (1991) Handling and evaluation of the data from the aerobiological sampling. Monograf REA/EAN 1:1–18

    Google Scholar 

  • Emberlin J (1994) The effects of patterns in climate and pollen abundance on allergy. Allergy 49:15–20

    Article  Google Scholar 

  • Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones S (1997) The trend to earlier birch pollen seasons in the UK: a biotic response to changes in weather conditions? Grana 36:29–33

    Article  Google Scholar 

  • Emberlin J, Dentandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimäki A (2002) Responses in the start of Betula (Birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170

    Article  Google Scholar 

  • Frenguelli G, Tedeschini E, Veronesi F, Bricchi E (2002) Airborne pine (Pinus spp.) pollen in the atmosphere of Perugia (Central Italy): behaviour of pollination in the two last decades. Aerobiologia 18:223–228

    Article  Google Scholar 

  • Galán C, Cariñanos P, Alcázar P, Domínguez-Vilches E (2007) Spanish aerobiology network (REA): management and quality manual. Publications Services of the University of Córdoba, Cordoba.

    Google Scholar 

  • García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure J, Ruiz L, Trigo MM, Domínguez-Vilches E (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. An Agric Environ Med 13:209–224

    Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere. Leonard Hill, Plymounth

    Google Scholar 

  • Jackson M (2001) Allergy: the making of a modern plague. Clin Exp Allergy 31:1665–1671

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Ladeau SL, Clark JS (2006) Pollen production by Pinus taeda growing in elevated atmospheric CO2. Funct. Ecol 20:541–547

    Article  Google Scholar 

  • Martonne E (1964) Tratado de geografía física. Juventud, Barcelona

    Google Scholar 

  • Newnham RM (1999) Monitoring biogeographical response to climate change: the potential role of aeropalynology. Aerobiologia 15:87–94

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  • Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710

    Article  Google Scholar 

  • Paiva J (1993a) Parietaria. In: Castroviejo S et al. (eds) Flora Iberica vol. 3. Real Jardín Botánico C.S.I.C., Madrid, pp 268–270

    Google Scholar 

  • Paiva J (1993b). Urtica. In: Castroviejo S et al. (eds) Flora Iberica vol. 3. Real Jardín Botánico C.S.I.C., Madrid, pp 263–268

    Google Scholar 

  • Panayotopulu E, Tsaltakis K, Panayotopulos S (1991) Aerobiological monitoring in Greece (Athens-Thessaloniki) and screening of pollinosis. Grana 30:87–90

    Article  Google Scholar 

  • Pellizzaro G, Canu A, Arca B, Cesaraccio C, Vargiu A (2006) Use of pollen release as indicator of climatic change in an Mediterranean area. Geophys Res Abstr 8:06660

    Google Scholar 

  • Rasmussen A (2002) The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18:253–265

    Article  Google Scholar 

  • Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, Madrid

    Google Scholar 

  • Rodríguez-Rajo FJ, Iglesias I, Jato V (2004a) Allergenic airborne pollen monitoring of Vigo (NW Spain) in 1995–2001. Grana 43:164–173

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Dopazo A, Jato V (2004b) Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med 11:35–44

    Google Scholar 

  • Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114(6):865–869

    Article  Google Scholar 

  • Sahsamanoglou HS, Makrogiannis TJ (1992) Temperature trends over the Mediterranean region, 1950–88. Theor Appl Climatol 45(3):183–192

    Article  Google Scholar 

  • Spieksma FTM, Corden JM, Dentandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184

    Article  Google Scholar 

  • Tedeschini E, Rodríguez-Rajo FJ, Caramiello R, Jato V, Frenguelli G (2006) The inflluence of climate changes in Platanus spp. pollination in Spain and Italy. Grana 45:222–229

    Article  Google Scholar 

  • Teranishi H, Kenda Y, Katoh T, Kasuya M, Oura E, Taira H (2000) Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Clim Res 14:65–70

    Article  Google Scholar 

  • Thompson K, Grime JP, Mason G (1972) Seed germination in response to diurnal fluctuations of temperature. Nature 267 (5607):147–149

    Article  Google Scholar 

  • Torrecillas M, García González JJ, Palomeque MT, Muñoz C, Barceló JM, de la Fuente JL, Vega Chicote JM, Miranda A (1998) Prevalencia de sensibilizaciones en pacientes con polinosis de la provincia de Málaga. Rev Esp Alergol Inmunol Clín 13(2):122–125

    Google Scholar 

  • Vidal C, Dopazo A, Aira MJ (2001) Parietaria pollinosis in an Atlantic area: clinical and palynological data. J Invest Allergol Clin Immunol 11:107–111

    Google Scholar 

  • Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 8:279–282

    Google Scholar 

  • Wüthrich B (1989) Epidemiology of allergic diseases: are they really in the increase? Int Arch Allergy Appl Immunol 90:3–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Recio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recio, M., Rodríguez-Rajo, F.J., Jato, M.V. et al. The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo. Climatic Change 97, 215–228 (2009). https://doi.org/10.1007/s10584-009-9620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9620-4

Keywords

Navigation