Skip to main content
Log in

Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica

  • Phenology – Milwaukee 2012
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In mountainous regions, inversion situations with cold-air pools in the valleys occur frequently, especially in fall and winter. With the accumulation of inversion days, trees in lower elevations experience lower temperature sums than those in middle elevations. In a two-year observational study, deciduous trees, such as Acer pseudoplatanus and Fagus sylvatica, on altitudinal transects responded in their fall leaf senescence phenology. Phenological phases were advanced and senescence duration was shortened by the cold temperatures in the valley. This effect was more distinct for late phases than for early phases since they experienced more inversion days. The higher the inversion frequency, the stronger the signal was. Acer pseudoplatanus proved to be more sensitive to cold temperatures compared to Fagus sylvatica. We conclude that cold-air pools have a considerable impact on the vegetation period of deciduous trees. Considering this effect, trees in the mid hillside slopes gain advantages compared to lower elevations. Our findings will help to improve knowledge about ecological drivers and responses in mountainous forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Archetti M, Richardson AD, O’Keefe J, Delpierre N (2013) Predicting climate change impacts on the amount and duration of autumn colors in a New England forest. PLoS One 8(3):e57373. doi:10.1371/journal.pone.0057373

    Article  CAS  Google Scholar 

  • Bader DC, McKee TB (1985) Effects of shear, stability and valley characteristics on the destruction of temperature inversions. J Clim Appl Meteorol 24:822–832. doi:10.1175/1520-0450(1985)024<0822:EOSSAV>2.0.CO;2

    Article  Google Scholar 

  • Bastian O, Steinhardt U (2002) Development and perspectives of landscape ecology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Baumgartner A (1962) Die Lufttemperatur als Standortfaktor am Gr. Falkenstein (Bayer. Wald). Forstwiss Centralbl 81:18–47. doi:10.1007/BF01821588

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotech J 1:3–22. doi:10.1046/j.1467-7652.2003.00004.x

    Article  CAS  Google Scholar 

  • Burg SP, Burg EA (1962) Role of ethylene in fruit ripening. Plant Physiol 37(2):179–189

    Article  CAS  Google Scholar 

  • Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55:711–721. doi:10.1007/s00484-010-0386-1

    Article  Google Scholar 

  • Cao J, Jiang F, Sodmergen CK (2003) Time-course of programmed cell death during leaf senescence in Eucommia ulmoides. J Plant Res 116:7–12. doi:10.1007/s10265-002-0063-5

    Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agr Forest Meteorol 108:101–112. doi:10.1016/S0168-1923(01)00233-7

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365. doi:10.1016/j.tree.2007.04.003

    Article  Google Scholar 

  • Čufar K, Luis M, Saz MA, Črepinšek Z, Kajfež-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26:1091–1100. doi:10.1007/s00468-012-0686-7

    Article  Google Scholar 

  • Daubert K (1962) Ein Beitrag zur Kenntnis der Bodeninversionen. Meteorol Rundsch 15:121–130

    Google Scholar 

  • Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agr Forest Meteorol 149:938–948. doi:10.1016/j.agrformet.2008.11.014

    Article  Google Scholar 

  • Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J Forest Res 125:181–188. doi:10.1007/s10342-005-0099-x

    Article  Google Scholar 

  • Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J Forest Res 125:249–259. doi:10.1007/s10342-005-0098-y

    Article  Google Scholar 

  • Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob Change Biol 17:886–897. doi:10.1111/j.1365-2486.2010.02281.x

    Article  Google Scholar 

  • Dufrêne E, Davi H, Franҫois C, Gl M, Dantec VL, Granier A (2005) Modelling carbon and water cycles in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE. Ecol Model 185:407–436. doi:10.1016/j.ecolmodel.2005.01.004

    Article  Google Scholar 

  • DWD (2011) Deutschlandwetter im November 2011. German Meteorological Service (DWD), Offenbach

    Google Scholar 

  • Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Res 32:253–267. doi:10.3354/cr032253

    Article  Google Scholar 

  • Fang JY, Yoda K (1988) Climate and vegetation in China (I). Changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecol Res 3:37–51. doi:10.1007/BF02348693

    Article  Google Scholar 

  • Finn GA, Straszewski AE, Peterson V (2007) A general growth stage key for describing trees and woody plants. Ann Appl Biol 151:127–131. doi:10.1111/j.1744-7348.2007.00159.x

    Article  Google Scholar 

  • Fracheboud Y, Luquez V, Björkén L, Sjödin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European Aspen. Plant Physiol 149:1982–1991. doi:10.1104/pp.108.133249

    Google Scholar 

  • Gu L, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freezes: Increased cold damage in a warming world? Bioscience 58:253–262. doi:10.1641/B580311

    Article  Google Scholar 

  • Hänninen H (1991) Does climatic warming increase the risk of frost damage in northern trees? Plant Cell Environ 14:449–454. doi:10.1111/j.1365-3040.1991.tb01514.x

    Article  Google Scholar 

  • Hänninen H (1996) Effects of climatic warming on northern trees: testing the frost damage hypothesis with meteorological data from Provenance transfer experiments. Scand J Forest Res 11:17–25. doi:10.1080/02827589609382908

    Article  Google Scholar 

  • Hastic T (2013) Package ‘gam’ generalized additive models. The comprehensive R archive network. Published online: http://cran.r-project.org/. Accessed 19 July 2013

  • Heide OM (2003) High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol 23:931–936. doi:10.1093/treephys/23.13.931

    Article  CAS  Google Scholar 

  • Heide OM (1993) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plantarum 89:187–191. doi:10.1111/j.1399-3054.1993.tb01804.x

    Article  Google Scholar 

  • Jolly WM, Nemani R, Running SW (2005) A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Change Biol 11:619–632. doi:10.1111/j.1365-2486.2005.00930.x

    Article  Google Scholar 

  • Jonsson AM, Linderson ML, Stjernquist I, Schlyter P, Barring L (2004) Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Global Planet Change 44:195–207. doi:10.1016/j.gloplacha.2004.06.012

    Article  Google Scholar 

  • Kaiser A (1992) Analyse der vertikalen Temperaturstruktur im Zillertal anhand von Fesselballon-, Sodar- und Hangmessungen. Ber FBVA 67:51–64

    Google Scholar 

  • Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel HE, Suppan P (2012) Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33:539–555. doi:10.1002/joc.3444

    Google Scholar 

  • Kramer K (1994) A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in the Netherlands and Germany. Plant Cell Environ 17:367–377. doi:10.1111/j.1365-3040.1994.tb00305.x

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New York

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi:10.1146/annurev.arplant.57.032905.105316

    Article  CAS  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278. doi:10.1016/S1360-1385(03)00103-1

    Article  CAS  Google Scholar 

  • Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Spring phenology and frost damage risk of Betula sp. under climatic warming. Tree Physiol 20(17):1175–1182. doi:10.1093/treephys/20.17.1175

    Article  Google Scholar 

  • Machalek A (1974) Inversionsuntersuchungen in einem Gebirgstal. Wetter und Leben 26:157–168

    Google Scholar 

  • Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell, Berlin

    Google Scholar 

  • Meining S, van Wilpert K, Schröter H, Augustin N, Kramer P (2011) Waldzustandsbericht 2011. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Freiburg, pp 12–28

    Google Scholar 

  • Menzel A (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen—Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstliche Forschungsberichte München 164

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi:10.1038/17709

    Article  CAS  Google Scholar 

  • Menzel A, Fabian P (2001) Veränderungen der forstlichen Vegetationszeit in den letzten Jahrzehnten in Deutschland. Beitr Forstwirtsch Landschaftsökol 35:188–191

    Google Scholar 

  • Menzel A, Leuchner M, Schuster C, Renner S, Gröger A, Friedmann A, Korch O, Kirchner M, Jakobi G (2013) KLIMAGRAD—Auswirkungen des Klimawandels in den Alpen— Erfassung mittels Höhengradienten. Endbericht Januar 2013. Bayerisches Staatsministerium für Umwelt und Gesundheit, Munich

  • Micu D (2009) Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorol Atmos Phys 105:1–16. doi:10.1007/s00703-009-0035-6

    Article  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotech 8:200–207. doi:10.1016/S0958-1669(97)80103-6

    Article  CAS  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plantarum 101:746–753. doi:10.1111/j.1399-3054.1997.tb01059.x

    Article  Google Scholar 

  • Pepin NC (2001) Lapse rate changes in northern England. Theor Appl Climatol 68:1–16. doi:10.1007/s007040170049

    Article  Google Scholar 

  • Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. J Geophys Res: Atmospheres 110. doi: 10.1029/2004JD005047

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52. doi:10.1038/nature06444

    Article  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reiter R, Kanter H-J (1972) Das Klima des Wank. Ergebnisse einer rund 10-jährigen klimatologischen Messserie in 1780 m NN. Wissenschaftliche Mitteilungen der Physikalisch-Bioklimatischen Forschungsstelle der Fraunhofer Gesellschaft 7

  • Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188. doi:10.1111/j.1365-2486.2006.01164.x

    Article  Google Scholar 

  • Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J Clim 16:1032–1046. doi:10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2

    Article  Google Scholar 

  • Röthlisberger J (2010) Früher Frühling - früher Herbst? Beobachtungen und Reflexionen zur Herbstphänologie. Bauhinia 22:93–110

    Google Scholar 

  • Sauberer F, Dirmhirn I (1954) Über die Entstehung der extremen Temperaturminima in der Doline Gstettner-Alm. Arch Meteor Geophy B 5:307–326. doi:10.1007/BF02242757

    Article  Google Scholar 

  • Seyfert F (1970) Phänologische Studien aus dem Erzgebirge. Abh Meteorol Dienst DDR Nr 91. Akademie Verlag, Berlin

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448. doi:10.1111/j.1469-8137.1994.tb04243.x

    Article  CAS  Google Scholar 

  • Schuster C, Estrella N, Menzel A (2013) Shifting and extension of phenological periods with increasing temperature along altitudinal transects in southern Bavaria. Plant Biol. doi:10.1111/plb.12071

    Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725. doi:10.1002/joc.821

    Article  Google Scholar 

  • Taylor G, Tallis MJ, Giardina CP, Percy KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME, Scarascia-Mugnozza GE, Kets K, Long SP, Karnosky DF (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Glob Change Biol 14:264–275. doi:10.1111/j.1365-2486.2007.01473.x

    Article  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Phys 31:83–111. doi:10.1146/annurev.pp. 31.060180.000503

    Article  CAS  Google Scholar 

  • Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J Forest Res 132:1–8. doi:10.1007/s10342-012-0661-2

    Article  Google Scholar 

  • Vitasse Y, Franҫois C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agr Forest Meteorol 151:969–980. doi:10.1016/j.agrformet.2011.03.003

    Article  Google Scholar 

  • Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. doi:10.1007/s00442-009-1363-4

    Article  Google Scholar 

  • Wareing PF (1956) Photoperiodism in woody plants. Ann Rev Plant Physio 7:191–214. doi:10.1146/annurev.pp. 07.060156.001203

    Article  CAS  Google Scholar 

  • Wareing PF (1953) Growth studies in woody species V. Photoperiodism in dormant buds of Fagus sylvatica L. Physiol Plantarum 6:692–706. doi:10.1111/j.1399-3054.1953.tb08442.x

    Article  Google Scholar 

  • Wegener M (2006) KLIMA: Schwitzen am »kältesten Punkt Deutschlands«, Wetterzentrale Forum Archiv 2006 3. Quartal. http://www.wetterzentrale.de/cgi-bin/webbbs/wzarchive2006_3.pl?noframes;read=926929. Accessed 4 February 2013

  • Werner H, Kirchner M, Welzl G, Hangartner M (1999) Ozone measurements along vertical transects in the Alps. Env Sci Pollut R 6:83–87. doi:10.1007/BF02987554

    Article  CAS  Google Scholar 

  • Williams RF (1955) Redistribution of mineral elements during development. Annu Rev Plant Physiol 6:25–42. doi:10.1146/annurev.pp. 06.060155.000325

    Article  CAS  Google Scholar 

  • Wu C, Gonsamo A, Chen JM, Kurz WA, Price DT, Lafleur PM, Jassal RS, Dragoni D, Bohrer G, Gough CM, Verma SB, Suyker AE, Munger JW (2012) Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global Planet Change 92–93:179–190. doi:10.1016/j.gloplacha.2012.05.021

    Article  Google Scholar 

  • Yang X, Mustard JF, Tang J, Xu H (2012) Regional-scale phenology modeling based on meteorological records and remote sensing observations. J Geophys Res: Biogeosciences 117, G03029. doi:10.1029/2012JG001977

    Google Scholar 

  • Ziegler C (2011) Auswirkung der Fruktifikation auf den Zuwachs der Buche. In: Waldzustandsbericht 2011 – Bericht über den ökologischen Zustand des Waldes in NRW, Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur und Verbraucherschutz des Landes Nordrhein-Westfalen, Düsseldorf, Germany, pp 32–55

Download references

Acknowledgements

Our gratitude is directed to the Bavarian State Ministry of the Environment and Public Health for funding the project “Auswirkungen des Klimawandels in den Alpen—Erfassung mittels Höhengradienten” (KLIMAGRAD; Climate Change Impact Monitoring at Altitudinal Gradients) within the “Klimaprogramm Bayern 2020”. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) / ERC grant agreement n° [282250]. The authors furthermore acknowledge the support by the Bavarian State Forest Enterprise and the German Meteorological Service (DWD) for the provision of additional data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Schuster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, C., Kirchner, M., Jakobi, G. et al. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica . Int J Biometeorol 58, 485–498 (2014). https://doi.org/10.1007/s00484-013-0709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0709-0

Key words

Navigation