Skip to main content
Log in

Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990–2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adak G, Long SM, O’Brien S (2002) Trends in indigenous foodborne disease and deaths, England and Wales, 1992–2000. Gut 51:832–841

    Article  PubMed  CAS  Google Scholar 

  • Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett 9:467–484

    Article  PubMed  Google Scholar 

  • Bentham G, Langford IH (1995) Climate change and the incidence of food poisoning in England and Wales. Int J Biometeorol 39:81–86

    Article  PubMed  CAS  Google Scholar 

  • Bentham G, Langford IH (2001) Environmental temperatures and the incidence of food poisoning in England and Wales. Int J Biometeorol 45:22–26

    Article  PubMed  CAS  Google Scholar 

  • Bi P, Tong S, Donald K, Parton KA, Ni J (2003) Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County, China. Public Health Rep 118:65–69

    Article  PubMed  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  • CDC (2004) Salmonellosis. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/salmonellosis_t.htm. Accessed 2 April 2004

  • Checkley W, Epstein L, Gilman R, Figueroa D, Cama R, Patz J, Black R (2000) Effect of El Nino and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 355:442–450

    PubMed  CAS  Google Scholar 

  • Curriero F, Patz J, Rose J, Lele S (2001) The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am J Public Heal 91:1194–1199

    Article  PubMed  CAS  Google Scholar 

  • D’Souza R, Becker N, Hall G, Moodie K (2004) Does ambient temperature affect foodborne disease? Epidemiology 15:86–92

    Article  PubMed  Google Scholar 

  • Hall G, Kirk DM, Becker N, Gregory J, Unicomb L, Millard G, Stafford R, Lalor K, the OzFoodNet Working Group (2005) Estimating foodborne gastroenteritis. Emerg Infect Dis 11:1257–1264

    PubMed  Google Scholar 

  • Kovats R, Edwards S, Hajat S, Armstrong B, Ebi K, Menne B (2004) The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiol Infect 132:443–453

    Article  PubMed  CAS  Google Scholar 

  • Louis V, Gillespie I, O’Brien S, Russek-Cohen E, Pearson A, Colwell R (2005) Temperature-driven Campylobacter seasonality in England and Wales. Appl Environ Microbiol 71:85–92

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Urtaza J, Saco M, de Novoa J, Perez-Pineiro P, Peiteado J, Lozano-Leon A, Garcia-Martin O (2004) Influence of environmental factors and human activity on the presence of Salmonella serovars in a marine environment. Appl Environ Microbiol 70:2089–2097

    Article  PubMed  CAS  Google Scholar 

  • Nath G, Singh S, Sanyal S (1992) Childhood diarrhoea due to rotavirus in a community. Indian J Med Res 95:259–262

    PubMed  CAS  Google Scholar 

  • OzFoodNet (2002) The OzFoodNet working group. http://www.ozfoodnet.org.au

  • Pinfold J, Horan N, Mara D (1991) Seasonal effects on the reported incidence of acute diarrhoeal disease in northeast Thailand. Int J Epidemiol 20:777–786

    Article  PubMed  CAS  Google Scholar 

  • Shumway RH, Stoffer DS (2000) Time series analysis and its applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Singh R, Hales S, Wet N, Raj R, Hearnden M, Weinstein P (2001) The influence of climate variation and change on diarrheal disease in the Pacific Islands. Environ Health Perspect 109:55–59

    Article  Google Scholar 

  • South Australian Department of Health (1991) Communicable diseases control branch: csmart computing program. South Australian Department of Health, Adelaide

  • SPSS for Windows (2002) Rel. 11.5.1. 2002. SPSS, Chicago

    Google Scholar 

  • StataCorp (2003) Stata statistical software: release 8. College station, TX

  • Tam CC, Rodrigues LC, O’Brien SJ, Hajat S (2006) Temperature dependence of reported Campylobacter infection in England, 1989–1999. Epidemiol Infect 134:119–125

    Article  PubMed  CAS  Google Scholar 

  • Tobias A, Saez M (2004) Time-series regression models to study the short-term effects of environmental factors on health. In: http://www.udg.es/fcee/economia/n11.pdf. Accessed 2 April 2004

  • Tong S, Bi P, Donald K, McMichael AJ (2002) Climate variability and Ross River virus transmission. J Epidemiol Commun Health 56:617–621

    Article  CAS  Google Scholar 

  • Weisstein EW (2004) Poisson distribution. In: Wolfram A (ed) Mathworld. Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

  • WHO (2005) Drug-resistant Salmonella. http://www.who.int/mediacentre/factsheets/fs139/en/ Accessed 2 April 2005

Download references

Acknowledgements

We greatly appreciate Dr Andrew Metcalfe, Senior Lecturer in Statistics at the University of Adelaide, for his kind assistance with statistical issues in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Bi.

Appendix

Appendix

  1. 1.

    Standard poisson regression.

    In the standard Poisson regression analysis, the dependent variable is weekly salmonellosis cases. The Poisson distribution has only one parameter, ν, which equals the mean (or variance). The distribution is given by the formula (Weisstein 2004):

    $$ {\text{Pr}}{\left( {\text{Y}} \right)} = \frac{{\nu ^{n} e^{{ - \nu }} }} {{n!}} $$

    The estimation of the parameters is obtained by a maximum likelihood function. The model can be summarized as: ln (ν t) = α + β 1 temperaturet + β 2 rainfallt + sin(2πt/52) + cos(2πt/52)

  2. 2.

    Autoregressive adjusted poisson regression.

    According to our previous analysis, there is autocorrelation between both dependent and independent variables. Therefore, the Poisson regression model adjusted for autocorrelation can be given as:

    $$ \begin{aligned} & {\text{ln }}{\left( {\nu _{{\text{t}}} } \right)} = \alpha + \beta _{1} {\text{ Y}}_{{{\text{t}} - {\text{1}}}} + \beta _{2} \,{\text{Y}}_{{{\text{t}} - {\text{2}}}} + \,\,\beta _{3} {\text{ Y}}_{{{\text{t}} - {\text{3}}}} + {\text{ }}\beta _{4} {\text{ Y}}_{{{\text{t}} - {\text{4}}}} \\ & + \beta _{5} {\text{temperature}}_{{\text{t}}} + {\text{ }}\beta _{6} {\text{temperaruep}}_{{{\text{t}} - {\text{1}}}} \\ & + {\text{ }}\beta _{7} {\text{temperaturep}}_{{{\text{t}} - {\text{2}}}} {\text{ }} + {\text{ }}\beta _{8} {\text{rainfall}}_{{\text{t}}} + \beta _{9} {\text{rainfall}}_{{{\text{t}} - {\text{1}}}} \\ & + \beta _{{10}} {\text{rainfall}}_{{{\text{t}} - {\text{2}}}} {\text{ }} + {\text{sin}}{\left( {{{\text{2}}\pi {\text{t}}} \mathord{\left/ {\vphantom {{{\text{2}}\pi {\text{t}}} {52}}} \right. \kern-\nulldelimiterspace} {52}} \right)}\, + {\text{cos}}{\left( {{{\text{2}}\pi {\text{t}}} \mathord{\left/ {\vphantom {{{\text{2}}\pi {\text{t}}} {52}}} \right. \kern-\nulldelimiterspace} {52}} \right)} \\ \end{aligned} $$
  3. 3.

    Multiple linear regression.

    The regression model is:

    $$ \begin{aligned} & {\sqrt {Yt} } = {\text{ }}\alpha + \beta _{1} {\sqrt {Y_{{t - 1}} } } + \beta _{2} {\sqrt {Y_{{t - 2}} } } + \beta _{3} {\sqrt {Y_{{t - 3}} } } + \beta _{4} {\sqrt {Y_{{t - 4}} } } \\ & + \beta _{5} {\text{temperature}}_{{\text{t}}} + \beta _{6} {\text{temperaute}}_{{{\text{t}} - {\text{1}}}} \\ & + \beta _{7} {\text{temperature}}_{{{\text{t}} - {\text{2}}}} + \beta _{8} {\text{rainfall}}_{{\text{t}}} + \beta _{9} {\text{rainfall}}_{{{\text{t}} - {\text{1}}}} \\ & + \beta _{{10}} {\text{rainfall}}_{{{\text{t}} - {\text{2}}}} {\text{ }} + {\text{sin}}{\left( {{{\text{2}}\pi {\text{t}}} \mathord{\left/ {\vphantom {{{\text{2}}\pi {\text{t}}} {52}}} \right. \kern-\nulldelimiterspace} {52}} \right)}\, + {\text{cos}}{\left( {{{\text{2}}\pi {\text{t}}} \mathord{\left/ {\vphantom {{{\text{2}}\pi {\text{t}}} {52}}} \right. \kern-\nulldelimiterspace} {52}} \right)} + Et \\ \end{aligned} $$

    Where Et is independent random error with mean 0.

  4. 4.

    Seasonal autoregressive moving average (SARIMA) models.

    An autoregression moving average (ARMA) model predicts the outcome variable from the values of the outcome at previous time points. It is an approach to handle time-series modelling and forecasting based on the landmark work of Box and Jenkins (1976). The theory and application of the models have been described in many papers and books (Shumway and Stoffer 2000; Brockwell and Davis 1991; Tobias and Saez 2004). The ARMA model is suitable only for stationary processes. The SARIMA model allows for a trend and seasonal effects by differencing. The model described here SARIMA(4,0,0)*(1,0,0)52, which stands for 4-order autoregression and 1-order seasonal autoregression with a period of 52 weeks, has the following form. Let Xt be the square root of Yt. Define Wt by Wt = Xt−Xt−52. Then

    $$ \begin{aligned} & Wt = \alpha _{0} + \alpha _{1} {\text{ }}W_{{{\text{t}} - {\text{1}}}} + \alpha _{2} \,W_{{{\text{t}} - {\text{2}}}} + \alpha _{3} \,W_{{{\text{t}} - {\text{3}}}} \, + \alpha _{4} \,W_{{{\text{t}} - {\text{4}}}} \\ & + \beta {\rm E}_{{{\text{t}} - 52}} + \gamma _{1} {\text{Temperature}}_{{\text{t}}} + {\text{ }}\gamma _{2} {\text{Temperaute}}_{{{\text{t}} - {\text{1}}}} \\ & + {\text{ }}\gamma _{3} {\text{Temperature}}_{{{\text{t}} - {\text{2}}}} {\text{ }} + {\text{ }}\gamma _{4} {\text{rainfall}}_{{\text{t}}} + \gamma _{5} {\text{rainfall}}_{{{\text{t}} - {\text{1}}}} \\ & + \gamma _{6} {\text{rainfall}}_{{{\text{t}} - {\text{2}}}} {\text{ }}E_{{\text{t}}} \\ \end{aligned} $$

    Where Et is independent random error with mean 0.

    The Aikake information criterion (AIC) is used to compare models fit to one same series. The model with the smaller AIC fits the data better. AIC = −2 ln(L) + 2 k , where L is the likelihood function and k is the number of free parameters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Bi, P. & Hiller, J. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models. Int J Biometeorol 52, 179–187 (2008). https://doi.org/10.1007/s00484-007-0109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-007-0109-4

Keywords

Navigation