Skip to main content

Advertisement

Log in

Satellite-based prediction of surface dust mass concentration in southeastern Iran using an intelligent approach

  • ORIGINAL PAPER
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The southeastern section of Iran, especially the province of Khuzestan, experience severe air pollution levels, such as high values of surface dust mass concentration (SDMC). The province lacks accurate and well-placed ground observational stations, therefore the only viable approach for evaluating SDMC is via remote sensing. In this study, meteorological, hydrological and geological data on 11 input variables from Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2), global precipitation measurement (GPM) and Global Land Data Assimilation System (GLDAS) for the year 2018 are used for prediction of the SDMC values, also obtained from another MERRA-2 mission. For real-time prediction, Pearson’s correlation coefficient (PCC) analysis shows that wind-related variables—surface wind speed, surface aerodynamic conductance and surface pressure—are those with the highest correlation with SDMC. Using the gradient boosting regression (GBR) algorithm, these three variables can simulate SDMC with good accuracy \((R^{2} = 0.76,\;NSE = 0.76, \;N{\text{-}}RMSE = 0.48 \;and\;N{\text{-}}MAE = 0.34)\). Furthermore, near-future SDMC forecasting down to 8 days prior of SMDC occurrence is also carried out. A sequential forward feature selection of the input variables, based on PCC, is used for four lead times and results show that surface pressure and heat flux govern near-future predictions. With \(R^{2} = 0.46\) and \(N{\text{-}}RMSE = 0.74\), GBR shows good potential for forecasting SDMC 8 days in advance. Real-time and near-future simulation results generally show that robust SDMC prediction can be obtained using exclusively remote sensing data, without ground-based observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Please contact the corresponding author for data requests.

Code availability

Please contact the corresponding author for code requests.

References

  • Al-Othman A, Tawalbeh M, Martis R, Dhou S, Orhan M, Qasim M, Olabi AG (2022) Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: advances and prospects. Energy Convers Manag 253:115154

    Article  CAS  Google Scholar 

  • Allison P (2013) What’s the best R-squared for logistic regression. Stat Horiz 13

  • Amaral SS, De Carvalho JA, Costa MAM, Pinheiro C (2015) An overview of particulate matter measurement instruments. Atmosphere 6(9):1327–1345

    Article  CAS  Google Scholar 

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175

    Article  CAS  Google Scholar 

  • Arkian F, Nicholson SE (2018) Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data. Environ Monit Assess 190(1):1–15

    Article  CAS  Google Scholar 

  • Asadollah SBHS, Khan N, Sharafati A, Shahid S, Chung E-S, Wang X-J (2021a) Prediction of heat waves using meteorological variables in diverse regions of Iran with advanced machine learning models. Stoch Environ Res Risk Assess 36:1959–1974

    Article  Google Scholar 

  • Asadollah SBHS, Sharafati A, Motta D, Yaseen ZM (2021b) River water quality index prediction and uncertainty analysis: a comparative study of machine learning models. J Environ Chem Eng 9(1):104599

    Article  CAS  Google Scholar 

  • Asadollah SBHS, Sharafati A, Shahid S (2022) Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran. Environ Sci Pollut Res 29(12):17260–17279

    Article  Google Scholar 

  • Bahad P, Saxena P (2020) Study of adaboost and gradient boosting algorithms for predictive analytics. In: International conference on intelligent computing and smart communication 2019. Springer, pp 235–244

  • Brook RD, Rajagopalan S (2009) Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens 3(5):332–350

    Article  Google Scholar 

  • Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press

    Google Scholar 

  • Chicco D, Warrens MJ, Jurman G (2021) The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 7:e623

    Article  Google Scholar 

  • Chok NS (2010) Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data. University of Pittsburgh

    Google Scholar 

  • Chu Y, Liu Y, Li X, Liu Z, Lu H, Lu Y, Mao Z et al (2016) A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere 7(10):129

    Article  Google Scholar 

  • Chudnovsky AA, Koutrakis P, Kloog I, Melly S, Nordio F, Lyapustin A, Wang Y et al (2014) Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmos Environ 89:189–198

    Article  CAS  Google Scholar 

  • Dadashi-Roudbari A, Ahmadi M (2020) Evaluating temporal and spatial variability and trend of aerosol optical depth (550 nm) over Iran using data from MODIS on board the Terra and Aqua satellites. Arab J Geosci 13(6):1–23

    Article  Google Scholar 

  • Daniali M, Karimi N (2019) Spatiotemporal analysis of dust patterns over Mesopotamia and their impact on Khuzestan province, Iran. Nat Hazards 97(1):259–281

    Article  Google Scholar 

  • Davis SM, Swain PH (1978) Remote sensing: the quantitative approach. McGraw-Hill International Book Company, New York

    Google Scholar 

  • Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J (2016) Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ Sci Technol 50(9):4712–4721

    Article  CAS  Google Scholar 

  • Diao M, Holloway T, Choi S, O’Neill SM, Al-Hamdan MZ, Donkelaar AV, Martin RV et al (2019) Methods, availability, and applications of PM2.5 exposure estimates derived from ground measurements, satellite, and atmospheric models. J Air Waste Manag Assoc 69(12):1391–1414

    Article  CAS  Google Scholar 

  • Donkelaar AV, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118(6):847–855

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419–5454

    Article  Google Scholar 

  • Ghozat A, Sharafati A, Hosseini SA (2022) Satellite-based monitoring of meteorological drought over different regions of Iran: application of the CHIRPS precipitation product. Environ Sci Pollut Res 29:1–18

    Article  Google Scholar 

  • Gomis D, Ruiz S, Sotillo MG, Álvarez-Fanjul E, Terradas J (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Glob Planet Change 63(2–3):215–229

    Article  Google Scholar 

  • Gueymard CA, Yang D (2020) Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos Environ 225:117216

    Article  CAS  Google Scholar 

  • Guo H, Xu M, Hu Q (2011) Changes in near-surface wind speed in China: 1969–2005. Int J Climatol 31(3):349–358

    Article  Google Scholar 

  • Hamanaka RB, Mutlu GM (2018) Particulate matter air pollution: effects on the cardiovascular system. Front Endocrinol 9:680

    Article  Google Scholar 

  • Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Wydział Nauk Geograficznych i Geologicznych Uniwersytetu im. Adama Mickiewicza

  • Johnson NE, Bonczak B, Kontokosta CE (2018) Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment. Atmos Environ 184:9–16

    Article  CAS  Google Scholar 

  • Just AC, Wright RO, Schwartz J, Coull BA, Baccarelli AA, Tellez-Rojo MM, Moody E et al (2015) Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environ Sci Technol 49(14):8576–8584

    Article  CAS  Google Scholar 

  • Karandish F, Šimůnek J (2016) A comparison of numerical and machine-learning modeling of soil water content with limited input data. J Hydrol 543:892–909

    Article  Google Scholar 

  • Kianian B, Liu Y, Chang HH (2021) Imputing satellite-derived aerosol optical depth using a multi-resolution spatial model and random forest for PM2.5 prediction. Remote Sens 13(1):126

    Article  Google Scholar 

  • Kwasny F, Madl P, Hofmann W (2010) Correlation of air quality data to ultrafine particles (UFP) concentration and size distribution in ambient air. Atmosphere 1(1):3–14

    Article  CAS  Google Scholar 

  • Lee HJ, Coull BA, Bell ML, Koutrakis P (2012) Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ Res 118:8–15

    Article  CAS  Google Scholar 

  • Lee M, Kloog I, Chudnovsky A, Lyapustin A, Wang Y, Melly S, Coull B et al (2016) Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011. J Eposure Sci Environ Epidemiol 26(4):377–384

    Article  CAS  Google Scholar 

  • Liu D, Li L (2015) Application study of comprehensive forecasting model based on entropy weighting method on trend of PM25 concentration in Guangzhou, China. Int J Environ Res Public Health 12(6):7085–7099

    Article  CAS  Google Scholar 

  • Liu S, Lu L, Mao D, Jia L (2007) Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol Earth Syst Sci 11(2):769–783

    Article  Google Scholar 

  • Mallick K, Wandera L, Bhattarai N, Hostache R, Kleniewska M, Chormanski J (2018) A critical evaluation on the role of aerodynamic and canopy–surface conductance parameterization in SEB and SVAT models for simulating evapotranspiration: a case study in the upper biebrza national park wetland in poland. Water 10(12):1753

    Article  Google Scholar 

  • Mehdizadeh S, Behmanesh J, Khalili K (2017) Evaluating the performance of artificial intelligence methods for estimation of monthly mean soil temperature without using meteorological data. Environ Earth Sci 76(8):1–16

    Article  Google Scholar 

  • MERRA, G. (2AD) tavgU_2d_lnd_Nx: 2d, diurnal, time-averaged, single-level, assimilation, land surface diagnostics V5. 12.4. EarthData GES DISC NASA

  • Mirakbari M, Ebrahimi Khusfi Z (2020) Investigation of spatial and temporal changes in atmospheric aerosol using aerosol optical depth in Southeastern Iran. J RS GIS Nat Resour 11(3):87–105

    Google Scholar 

  • Mirzaei M, Amanollahi J, Tzanis CG (2019) Evaluation of linear, nonlinear, and hybrid models for predicting PM 2.5 based on a GTWR model and MODIS AOD data. Air Qual Atmos Health 12(10):1215–1224

    Article  CAS  Google Scholar 

  • Nabavi SO, Haimberger L, Abbasi R, Samimi C (2018) Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms. Aeol Res 35:69–84

    Article  Google Scholar 

  • Nakata M, Sano I, Mukai S, Holben BN (2013) Spatial and temporal variations of atmospheric aerosol in Osaka. Atmosphere 4(2):157–168

    Article  CAS  Google Scholar 

  • Nguyen DL, Kim JY, Ghim YS, Shim S-G (2015) Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period. Environ Sci Pollut Res 22(5):3594–3605

    Article  CAS  Google Scholar 

  • Nie P, Roccotelli M, Fanti MP, Ming Z, Li Z (2021) Prediction of home energy consumption based on gradient boosting regression tree. Energy Rep 7:1246–1255

    Article  Google Scholar 

  • Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377

    Article  Google Scholar 

  • Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, Stafoggia M et al (2016) Particulate matter air pollution components and risk for lung cancer. Environ Int 87:66–73

    Article  CAS  Google Scholar 

  • Randles CA, Da Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A et al (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J Clim 30(17):6823–6850

    Article  CAS  Google Scholar 

  • Ratner B (2009) The correlation coefficient: its values range between+ 1/− 1, or do they? J Target Meas Anal Mark 17(2):139–142

    Article  Google Scholar 

  • Rebekić A, Lončarić Z, Petrović S, Marić S (2015) Pearson’s or Spearman’s correlation coefficient-which one to use? Poljoprivreda 21(2):47–54

    Article  Google Scholar 

  • Reichle RH, Draper CS, Liu Q, Girotto M, Mahanama SPP, Koster RD, De Lannoy GJM (2017) Assessment of MERRA-2 land surface hydrology estimates. J Clim 30(8):2937–2960

    Article  Google Scholar 

  • Rezaei M, Farajzadeh M, Mielonen T, Ghavidel Y (2019) Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data. Atmos Pollut Res 10(2):508–519

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor UEA, Gottschalck J, Mitchell K, Meng C-JJ, Arsenault K et al (2004) The global land data assimilation system. Bull Am Meteor Soc 85(3):381–394. https://doi.org/10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Sabetghadam S, Khoshsima M, Alizadeh-Choobari O (2018) Spatial and temporal variations of satellite-based aerosol optical depth over Iran in Southwest Asia: Identification of a regional aerosol hot spot. Atmos Pollut Res 9(5):849–856

    Article  CAS  Google Scholar 

  • Salami H, Khorami S, Yazdani S, Saleh I (2021) Economic evaluation of the damages of dust bowl on crop yield by choice experiment method in Khuzestan Province of Iran. Int J Agric Manag Dev 11(3)

  • Shafizadeh-Moghadam H, Minaei M, Pontius RG Jr, Asghari A, Dadashpoor H (2021) Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj Region of Iran. Comput Environ Urban Syst 87:101595

    Article  Google Scholar 

  • Sharafati A, Asadollah SBHS, Hosseinzadeh M (2020a) The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Saf Environ Prot 140:68–78

    Article  CAS  Google Scholar 

  • Sharafati A, Asadollah SBHS, Motta D, Yaseen ZM (2020b) Application of newly developed ensemble machine learning models for daily suspended sediment load prediction and related uncertainty analysis. Hydrol Sci J 65:2022–2042

    Article  Google Scholar 

  • Shiru MS, Shahid S, Chae S-T, Chung E-S (2022) Replicability of annual and seasonal precipitation by CMIP5 and CMIP6 GCMs over East Asia. KSCE J Civ Eng 26:1–12

    Article  Google Scholar 

  • Silva FG, Sena I, Lima LA, Fernandes FP, Pacheco MF, Vaz CB, Lima J, et al (2022) External climate data extraction using the forward feature selection method in the context of occupational safety. In: International conference on computational science and its applications. Springer, pp 3–14

  • Srivastava C, Singh S, Singh AP (2018) Estimation of air pollution in Delhi using machine learning techniques. In: 2018 International conference on computing, power and communication technologies (GUCON). IEEE, pp 304–309

  • Sun E, Xu X, Che H, Tang Z, Gui K, An L, Lu C et al (2019) Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J Atmos Solar Terr Phys 186:8–19

    Article  CAS  Google Scholar 

  • Tao T, Shi P, Wang H, Yuan L, Wang S (2021) Performance evaluation of linear and nonlinear models for short-term forecasting of tropical-storm winds. Appl Sci 11(20):9441

    Article  Google Scholar 

  • U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards (1996) Review of the national ambient air quality standards for particulate matter: Policy assessment of scientific and technical information. DIANE Publishing

    Google Scholar 

  • Ukhov A, Mostamandi S, Silva AD, Flemming J, Alshehri Y, Shevchenko I, Stenchikov G (2020) Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmos Chem Phys 20(15):9281–9310

    Article  Google Scholar 

  • USEPA, Office of Air and Radiation (2019) Health and environmental effects of particulate matter (PM). Retrieved

  • Veselovskii I, Goloub P, Podvin T, Tanre D, Silva AD, Colarco P, Castellanos P et al (2018) Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations. Atmos Meas Tech 11(2):949–969

    Article  CAS  Google Scholar 

  • Wang W-C, Chau K-W, Cheng C-T, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374(3–4):294–306

    Article  Google Scholar 

  • Wang F, Wang Y, Zhang K, Hu M, Weng Q, Zhang H (2021) Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environ Res 202:111660

    Article  CAS  Google Scholar 

  • Wei Z (2021) Forecasting wind waves in the US Atlantic Coast using an artificial neural network model: towards an AI-based storm forecast system. Ocean Eng 237:109646

    Article  Google Scholar 

  • WHO (2014) 7 million premature deaths annually linked to air pollution

  • Xu X, Wu H, Yang X, Xie L (2020) Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmos Environ 237:117670

    Article  CAS  Google Scholar 

  • Xu J, Lu W, Li J, Yuan H (2022) Dependency maximization forward feature selection algorithms based on normalized cross-covariance operator and its approximated form for high-dimensional data. Inf Sci 617:416–434

    Article  Google Scholar 

  • Yao W, Che H, Gui K, Wang Y, Zhang X (2020) Can MERRA-2 reanalysis data reproduce the three-dimensional evolution characteristics of a typical dust process in East Asia? A case study of the dust event in May 2017. Remote Sens 12(6):902

    Article  Google Scholar 

  • Younis H, Anwar MW, Khan MUG, Sikandar A, Bajwa UI (2021) A new sequential forward feature selection (SFFS) algorithm for mining best topological and biological features to predict protein complexes from protein–protein interaction networks (PPINs). Interdiscip Sci Comput Life Sci 13(3):371–388

    Article  CAS  Google Scholar 

  • Yousefi R, Wang F, Ge Q, Shaheen A (2020) Long-term aerosol optical depth trend over Iran and identification of dominant aerosol types. Sci Total Environ 722:137906

    Article  CAS  Google Scholar 

  • Zarasvandi A (2009) Environmental impacts of dust storms in the Khuzestan province. Environmental Protection Agency (EPA) of Khuzestan province, internal report

  • Zarasvandi A, Carranza EJM, Moore F, Rastmanesh F (2011) Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J Geochem Explor 111(3):138–151

    Article  CAS  Google Scholar 

  • Zhang Y, Haghani A (2015) A gradient boosting method to improve travel time prediction. Transp Res Part C Emerg Technol 58:308–324

    Article  Google Scholar 

  • Zhang X, Chu Y, Wang Y, Zhang K (2018) Predicting daily PM2. 5 concentrations in Texas using high-resolution satellite aerosol optical depth. Sci Total Environ 631:904–911

    Article  Google Scholar 

  • Zhang J, Ma G, Huang Y, Aslani F, Nener B (2019) Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr Build Mater 210:713–719

    Article  Google Scholar 

  • Zhu X, Zhang P, Xie M (2021) A joint long short-term memory and AdaBoost regression approach with application to remaining useful life estimation. Measurement 170:108707

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

SBHSA carried out the investigation, and modeling, and participated in drafting the manuscript. AS proposed the topic, participated in coordination, aided in the interpretation of results, and paper editing. DM carried out the visualization and paper editing. AJ-A data curation and paper editing. MÁP review and editing; validation.

Corresponding author

Correspondence to Ahmad Sharafati.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadollah, S.B.H.S., Sharafati, A., Motta, D. et al. Satellite-based prediction of surface dust mass concentration in southeastern Iran using an intelligent approach. Stoch Environ Res Risk Assess 37, 3731–3745 (2023). https://doi.org/10.1007/s00477-023-02473-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-023-02473-6

Keywords

Navigation