Skip to main content
Log in

Environmetric and GIS techniques for hydrochemical characterization of the Dal lake, Kashmir Himalaya, India

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This research explains the background processes responsible for the spatial distribution of hydrochemical properties of the picturesque eutrophic Himalayan Lake, Dal, located in Kashmir valley, India. Univariate and multivariate statistical analyses were used to understand the spatiotemporal variability of 18 hydrochemical parameters comprising of 12,960 observations collected from 30 sampling sites well distributed within the lake at a grid spacing of 1 km2 from March 2014 to February 2016. Hierarchical cluster analysis (HCA) grouped all the sampled data into three clusters based on the hydrochemical similarities, Discriminant analysis also revealed the same clusters and patterns in the data, validating the results of HCA. Wilk’s λ quotient distribution revealed the contribution of ions, nutrients, secchi disk transparency, dissolved oxygen and pH in the formation of clusters. The results are in consonance with the Principal Component Analysis of the whole lake data and individual clusters, which showed that the variance is maximally explained by the ionic component (46.82%) followed by dissolved oxygen and pH (9.36%), nitrates and phosphates (7.33%) and Secchi disk transparency (5.98%). Spatial variability of the hydrochemistry of the lake is due to the variations in water depth, lake water dynamics, flushing rate of water, organic matter decomposition, and anthropogenic pressures within and around the Dal lake ecosystem. Overall, the water quality of the lake is unfit for drinking due to the presence of coliform bacteria in the lake waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afifi A, Clark VA, May S, Raton B (2004) Computer-aided multivariate analysis, 4th edn. Chapman & Hall, London

    Google Scholar 

  • American Public Health Association (APHA) (2005) Standard methods for the examination of water and waste water. 21st edn. Washington, DC

  • Amin A, Fazal S, Mujtaba A, Singh SK (2014) Effects of land transformation on water quality of Dal lake, Srinagar, India. J Indian Soc Remote Sens 42(1):119–128

    Article  Google Scholar 

  • Anttila S, Kairesalo T, Pellikka P (2008) A feasible method to assess inaccuracy caused by patchiness in water quality monitoring. Environ Monit Assess 142:11–22. https://doi.org/10.1007/s10661-007-9904-y

    Article  CAS  Google Scholar 

  • Badar B, Romshoo SA (2007) Modelling the non-point source pollution load in an urban watershed using remote sensing and GIS: a case study of Dal lake. J Himal Ecol Sustain Dev 2(1):21–30

    Google Scholar 

  • Badar B, Romshoo SA, Khan MA (2013a) Integrating biophysical and socio-economic information for prioritizing watersheds in the Kashmir Himalayan lake: a remote sensing and GIS approach. Environ Monit Assess 185(8):6419–6445

    Article  CAS  Google Scholar 

  • Badar B, Romshoo SA, Khan MA (2013b) Modeling the catchment hydrological response in a Himalayan lake as a function of changing land system. Earth Syst Sci 112(2):433–449

    Article  Google Scholar 

  • Bagnolus F, Meher-Homji VM (1959) Bio-climatic types of south East Asia. Travaux de la Section Scientific at Technique Institut Francis de Pondicherry, p 227

  • Brown TC, Froemke P (2012) Nationwide assessment of nonpoint source threats to water quality. BioScience 62(2):136–146

    Article  Google Scholar 

  • Bureau of Indian Standards (2012) Indian Standard drinking water specifications. BIS.10500:2012

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Chang NB (2005) Sustainable water resources management under uncertainty. Stoch Environ Res Risk Assess 19(2):97–98

    Article  Google Scholar 

  • Chen Y, Zhao K, Wu Y, Gao S, Cao W, Bo Y, Shang Z, Wu J, Zhou F (2016) Spatio-temporal patterns and source identification of water pollution in lake Taihu (China). Water 8(3):86

    Article  Google Scholar 

  • Datta NK (1983) Geology, evolution and hydrocarbon prospects of Kashmir valley. Pet Asia J, 176–177

  • De Ceballos BSO, Koning A, De Olivera JF (1998) Dam reservoir eutrophication: a simplified technique for a fast diagnosis of an environmental degradation. Water Res 32(11):3477–3483

    Article  Google Scholar 

  • Duan W, He B, Nover D, Yang G, Chen W, Meng H, Zou S, Liu C (2016) Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods. Sustainability 8(2):133

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Leveque C, Naiman RJ, Prieur-Richard A, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  • Elhatip H, Hinis MA, Gulgahar N (2007) Evaluation of the water quality at Tahtali dam watershed in Izmir, Turkey by means of statistical methodology. Stoch Environ Res Risk Assess 22(3):391–400

    Article  Google Scholar 

  • Hamid A, Bhat SA, Bhat SU, Jehangir A (2016) Environmetric techniques in water quality assessment and monitoring: a case study. Environ Earth Sci 75:321

    Article  Google Scholar 

  • Hassan Z, Shah JA, Kanth TA, Pandit AK (2015) Influence of land use/land cover on the water chemistry of Wular Lake in Kashmir Himalaya (India). Ecol Process 4(1):1–11

    Article  Google Scholar 

  • Hatvani IG, Kovács J, Kovácsne SI, Jakusch P, Korponai J (2011) Analysis of lomg term water quality changes in the Kis-Balaton Water Protection System with time series, cluster analysis and Wilk’s lambda distribution. Ecol Eng 37(4):629–635

    Article  Google Scholar 

  • Hatvani IG, Clement A, Kovács J, Kovács SI, Korponai J (2014) Assessing water quality data: the relationship between the water quality amelioration of Lake Balaton and the construction of its mitigation wetland. J Great Lakes Res 40:115–125

    Article  CAS  Google Scholar 

  • Hector RA, Manuel CC, Rey MQ, Ruben AST, Adan PM (2012) An overall water quality index (WQI) for a man-made aquatic reservoir in Mexico. Int J Environ Res Public Health 9:1687–1698

    Article  Google Scholar 

  • Hedger RD, Atkinson PM, Malthus TJ (2001) Optimizing sampling strategies for estimating mean water quality in lakes using geostatistical techniques with remote sensing. Lake Reserv Res Manag 6:279–288

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of ground water composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816

    Article  CAS  Google Scholar 

  • Horton R (1965) An index number system for rating water quality. J Water Pollut Control Fed 37:300–306

    Google Scholar 

  • Huang F, Wang X, Lou L, Zhou Z, Wu J (2010) Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res 44(5):1562–1572

    Article  CAS  Google Scholar 

  • Jan D (2013b) Monitoring of sewage treatment plants around the Dal Lake for waste water treatment. Ph.D. thesis, University of Kashmir

  • Jan D, Pandit AK, Kamili AN (2013) Efficiency evaluation of three fluidised aerobic bioreactor based sewage treatment plants in Kashmir Valley. Afr J Biotechnol 12(17):2224–2233

    Article  CAS  Google Scholar 

  • Jarvie HP, Whitton BA, Neal C (1998) Nitrogen and phosphorus in east coast British rivers: speciation, sources and biological significance. Sci Total Environ 210–211:79–109

    Article  Google Scholar 

  • Jassby AD, Cole BE, Cloern JE (1997) The design of sampling transects for characterizing water quality in Estuaries. Estuar Coast Shelf Sci 45:285–302

    Article  CAS  Google Scholar 

  • Javaid M, Ahmad A (2015) Evaluating the morphometric and hydrological characteristics of Dal lake using remote sensing and GIS. J Himal Ecol Sustain Dev 10:49–56

    Google Scholar 

  • Jeppesen E, Jensen JP, Sondergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343):151–164

    Article  Google Scholar 

  • Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Juahir H, Zain SM, Yusoff MK, Hanidza TIT, Armi ASM, Toriman ME, Mokhtar M (2011) Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ Monit Assess 173(1–4):625–641

    Article  Google Scholar 

  • Kawoosa BJ (2017) Dal Lake—The myth, perceptions and the realities. Jklda.org

  • Ketskeméty L, Izsó L (2005) Introduction into the SPSS system (Bevezetés az SPSS programrendszerbe). ELTE Eötvös Kiadó, Budapest

    Google Scholar 

  • Zutshi DP, Khan MA (1978) On lake typology of Kashmir. Environmental physiology and ecology of plants, pp 465–472

  • Khanday SA, Yousuf AR, Reshi ZA, Rashid I, Jehangir A, Romshoo SA (2016) Management of Nymphoides peltatum using water level fluctuations in fresh water lakes of Kashmir Himalaya. Limnology. https://doi.org/10.1007/s10201-016-0503-x

    Article  Google Scholar 

  • Kolovos A, Christakos G, Serre ML, Miller CT (2002) Computational BME solution of a stochastic advection reaction equation in the light of site-specific information. Water Resour Res 38(12):1318–1334

    Article  Google Scholar 

  • Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian J Occup Environ Med 16:40–44

    Article  Google Scholar 

  • Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38:1862–1872

    Article  CAS  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of ground water quality in a black foot disease area in Taiwan. Sci Total Environ 31(3):77–89

    Article  CAS  Google Scholar 

  • Magyar N, Hatvani IG, Székely IK, Herzig A, Dinka M, Kovács J (2013) Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecol Eng 85:82–92

    Article  Google Scholar 

  • Masoodi S (2017) Water quality assessment of Dal Lake, Kashmir, J&K. Int J Eng Technol Sci Res 4(5):375–383

    Google Scholar 

  • Masoodi A, Sengupta A, Khan FA, Sharma GP (2013) Predicting the spread of alligator weed (Alternanthera philoxeroides) in Wular Lake, India: a mathematical approach. Ecol Model 263:119–125

    Article  Google Scholar 

  • Mavukkandy MO, Karmakar S, Harikumar PS (2014) Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India). Environ Sci Pollut Res 21:10045–10066. https://doi.org/10.1007/s11356-014-3000-y

    Article  CAS  Google Scholar 

  • McKenna J (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Model Softw 18:205–220

    Article  Google Scholar 

  • Mei K, Liao L, Zhu Y, Lu P, Wang Z, Dahlgren RA, Zhang M (2014) Evaluation of spatial–temporal variations and trends in surface water quality across a rural suburban–urban interface. Environ Sci Pollut Res 21:8036–8051. https://doi.org/10.1007/s11356-014-2716-z

    Article  CAS  Google Scholar 

  • Momen B, Zehr GP, Boylen CW, Sutherland JW (1999) Determinants of summer nitrate concentration in a set of Adirondack Lakes, New York. Water Air Soil Pollut 111:19–28

    Article  CAS  Google Scholar 

  • Mushtaq B, Raina R, Yaseen T, Wanganeo A, Yousuf AR (2013) Variations in the physico-chemical properties of Dal Lake, Srinagar, Kashmir. Afr J Environ Sci Technol 7(7):624–633

    Google Scholar 

  • Najar IA, Khan AB (2012) Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environ Earth Sci 66(8):2367–2378

    Article  CAS  Google Scholar 

  • Nelson NM, Loomis JB, Paul M, Jakus PM, Kealy MJ, Stackelburg N, Ostermiller J (2015) Linking ecological data and economics to estimate the total economic value of improving water quality by reducing nutrients. Ecol Econ 118:1–9

    Article  Google Scholar 

  • Norusis MJ (1993) SPSS for Windows Professional Statistics Release 6.0. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • O’Reilly CM, Alin SR, Plisnier PD, Cohen AS, Mckee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–768

    Article  Google Scholar 

  • Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water systems—a case study: Mahanadi River (India). J Hydrol 331:434–445

    Article  CAS  Google Scholar 

  • Pandit AK (1988) Threats to Kashmir wetlands and their wildlife resources. Environ Conserv 15(03):266–268

    Article  Google Scholar 

  • Papatheodorou G, Demopoulou G, Lambrakis N (2006) A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecol Model 193:759–776

    Article  Google Scholar 

  • Rajaram T, Das A (2008) Water pollution by industrial effluents in India: discharge scenarios and case for participatory ecosystem specific local regulation. Futures 40(1):56–69

    Article  Google Scholar 

  • Rashid I, Farooq M, Muslim M, Romshoo SA (2013) Assessing the impact of anthropogenic activities on Manasbal Lake in Kashmir Himalayas. Int J Environ Sci 3(6):2052–2063

    Google Scholar 

  • Rashid I, Romshoo SA, Amin M, Khanday SA, Chauhan P (2017) Linking human-biophysical interactions with the trophic status of Dal lake. Limnol Ecol Manag Inland Waters 62:84–96

    Article  CAS  Google Scholar 

  • Rast W, Holland M (1998) Eutrophication of lakes and reservoirs: a framework for making management decisions. Ambio 17(1):2–12

    Google Scholar 

  • Ravikumar P, Somashekar RK, Mehmood MA (2013) Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Appl Water Sci 3:247–261

    Article  CAS  Google Scholar 

  • Romshoo SA, Muslim M (2011) Geospatial modeling for assessing the nutrient load of a Himalayan lake. Environ Earth Sci 64(5):1269–1282

    Article  CAS  Google Scholar 

  • Sahu P, Sikdar PK (2008) Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ Geol 55(4):823–835

    Article  CAS  Google Scholar 

  • Saleem S, Kamili AN, Kakru DK, Bandh SA (2013) Water quality assessment of Dal Lake, Kashmir using the coliforms as indicator bacteria. J New Biol Rep 2(1):30–35

    Google Scholar 

  • Saleem M, Jeelani G, Shah RA (2015) Hydrogeochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Environ Earth Sci 74(4):3301–3313

    Article  CAS  Google Scholar 

  • Sanchez E, Colmenarejo MF, Vicente J, Rubio A, Garcia MG, Travieso L, Borja R (2007) Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol Ind 7(2):315–328

    Article  Google Scholar 

  • Sargaonkar A (2003) Deshpande V (2003) Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ Monit Assess 89:43–67

    Article  CAS  Google Scholar 

  • Scheffer M (1998) The ecology of shallow lakes. Chapman & Hall, London

    Google Scholar 

  • Schriver P, Bogestrand J, Jeppesen E, Sondergaard M (1995) Impact of submerged macrophytes on fish–zooplankton–phytoplankton interactions: large scale enclosure experiments in a shallow eutrophic lake. Freshw Biol 33:255–270

    Article  Google Scholar 

  • Shar AH, Kazi Y, Zardari M, Soomro IH (2008) Enumeration of total and fecal coliform bacteria in drinking water of Khairpur Sindh. Pak J Med Res 47:18–21

    Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin. Jpn Environ Model Softw 22(4):464–475

    Article  Google Scholar 

  • Sibson R (1981) A brief description of natural neighbour interpolation. Interpret Multivar Data 21:21–36

    Google Scholar 

  • Simeonov V, Stratis JA, Samara C, Zacharadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimitzis T (2003) Assessment of the surface water quality in Northern Greece. Water Res 37(17):4119–4124

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Res 38(18):3980–3992

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: a case study. Anal Chem Acta 538:355–374

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Solim SU, Wanganeo A (2008) Excessive phosphorus loading to Dal Lake, India: implications for managing shallow eutrophic lakes in urbanized watersheds. Int Rev Hydrobiol 93(2):148–166

    Article  Google Scholar 

  • Steinhart CE, Schierow LJ, Sonzogni WC (1982) Environmental quality index for the Great Lakes. Water Resour Bull 18(6):1025–1031

    Article  CAS  Google Scholar 

  • Trisal CL (1987) Ecology and conservation of Dal lake, Kashmir. Int J Water Resour Dev 3(1):44–54

    Article  Google Scholar 

  • Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314

    Article  Google Scholar 

  • Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol 250:97–115

    Article  CAS  Google Scholar 

  • Varadan VKS (1977) Geology and mineral resources of the state of India part X Jammu and Kashmir State. Geol Surv India 30:1–71

    Google Scholar 

  • Varol S, Davraz A (2015) Evaluation of the groundwater quality with WQI (water quality index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environ Earth Sci 73:1725–1744

    Article  CAS  Google Scholar 

  • Varol M, Sen B (2009) Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environ Monit Assess 159:543–553

    Article  CAS  Google Scholar 

  • Varol M, Gökot B, Bekleyen A, Sen B (2012) Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 92:11–21

    Article  CAS  Google Scholar 

  • Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamil Nadu, India. Environ Monit Assess 171:595–609

    Article  CAS  Google Scholar 

  • Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592

    Article  CAS  Google Scholar 

  • Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  CAS  Google Scholar 

  • Walsh PJ, Milon JW (2016) Nutrient standards, water quality indicators, and economic benefits from water quality regulations. Environ Resour Econ 64:643–661

    Article  Google Scholar 

  • Wang HY (2002) Assessment and prediction of overall environmental quality of Zhuzhou City, Hunan Province. China J Environ Manag 66(3):329–340

    Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Wetzel RG (1975) Limnology: Philadelphia. WB Saunders Company 3

  • Wilks SS (1932) Certain generalizations in the analysis of variance. Biometrika 24:471–494

    Article  Google Scholar 

  • Yang Y, Zhou F, Guo H, Sheng H, Liu H, Dao X, He C (2010) Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ Monit Assess 170:407–416

    Article  CAS  Google Scholar 

  • Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci 59(7):1461–1473

    Article  CAS  Google Scholar 

  • Zhang SR, Lu XX, Higgitt DL, Chen CTA, Sun HG, Han JT (2007) Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences. J Geophys Res 112(F1):F01011. https://doi.org/10.1029/2006JF000493

    Article  CAS  Google Scholar 

  • Zhou F, Liu Y, Guo H (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in northern new territories. Hong Kong Environ Monit Assess 132(1–3):1–13

    CAS  Google Scholar 

  • Zutshi DP, Subla BA, Khan MA, Wanganeo A (1980) Comparative limnology of nine lakes of Jammu and Kashmir Himalayas. Hydrobiologia 72(1–2):101–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work has been accomplished under a research grant provided by the Space Application Centre (SAC), Indian Space Research Organization (ISRO), Ahmadabad, India for the project titled “Bio-optical characterization of Optically Complex Dal Waters”. The authors are thankful to the Lakes and waterways development authority (LAWDA) for providing the coliform bacterial data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakil Ahmad Romshoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanday, S.A., Romshoo, S.A., Jehangir, A. et al. Environmetric and GIS techniques for hydrochemical characterization of the Dal lake, Kashmir Himalaya, India. Stoch Environ Res Risk Assess 32, 3151–3168 (2018). https://doi.org/10.1007/s00477-018-1581-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1581-6

Keywords

Navigation