Skip to main content

Advertisement

Log in

Multivariate and Water Quality Index Approaches for Spatial Water Quality Assessment in Lake Ziway, Ethiopian Rift

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Information on water quality in aquatic environments is essential for managing and protecting surface water resources, such as lakes, reservoirs, and rivers. This study investigates the spatial status of water quality and the sources of contamination in Lake Ziway, Ethiopian Rift. Evenly distrusted lake water sampling, including the major feeding streams and effluents from floriculture and domestic waste that might have an impact on the lake’s water quality, was carried out. For hydrochemical analysis, multivariate techniques and water quality index (WQI) approaches were applied based on 44 water quality parameters. The water quality analysis result showed a non-uniform distribution of the measured physico–chemical and organic matter load indicators across the lake area. Multiple pollutants are present in the lake water at levels that exceed the World Health Organization’s recommendations. TU, EC, pH, DO, BOD, COD, Na+, K+, HCO3, Mn2+, and a few samples for F, Ni2+, and Pb2+ were the most commonly desecrated. Principal component analysis (PCA) identified four major components with 74.35% cumulative variance, and cluster analysis (CA) resulted in three clusters representing the central, southern, and northern sectors of the lake. The results of PCA and CA indicated that the water quality of the lake is largely controlled by sediments, nutrients, and organic sources as the key lake pollution sources. The overall water quality analysis (WQI > 300) of Lake Ziway and its major feeding rivers is categorized as unsuitable for domestic uses as well as aquatic life. The combined application of multivariate and WQI analysis showed how human-induced activities in the watershed, such as soil erosion, agriculture, industrialization, and urbanization, had a significant impact on the lake water quality and ecological integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this research are available from the corresponding author, upon request.

References

  • Abraham, T., & Nadew, B. (2018). Impact of land use land cover dynamics on water balance, Lake Ziway watershed, Ethiopia. Hydro Curr Res, 9, 309.

    Google Scholar 

  • Abraham, T., Woldemicheal, A., Muluneh, A., & Abate, B. (2018). Hydrological responses of climate change on Lake Ziway catchment, Central Rift Valley of Ethiopia. Journal of Earth Science & Climatic Change, 9(6), 474.

    Google Scholar 

  • Aga, A. O., Melesse, A. M., & Chane, B. (2019). Estimating the sediment flux and budget for a data limited Rift Valley Lake in Ethiopia. Hydrology. https://doi.org/10.3390/hydrology6010001

  • APHA. (1999). Standard methods for the examination of water and wastewater (20th ed.).

    Google Scholar 

  • APHRD (Animal and Plant Health Regulatory Directorate). (2010). List of registered pesticides as of May 2010. Animal and Plant Health Regulatory.

  • Asrat, A. (2018). Potential geoheritage sites in Ethiopia. Geoheritage, 339–353. https://doi.org/10.1016/b978-0-12-809531-7.00019-8

  • Ayenew T (1998). The hydrogeological system of the Lake District basin, central main Ethiopian Rift. Publ. no. 64, PhD Thesis, ITC, Enschede, The Netherlands.

  • Ayenew, T., & Legesse, D. (2007). The changing face of the Ethiopian rift lakes and their environs: call of the time. Lakes & Reservoirs: Research & Management, 12(3), 149–165. https://doi.org/10.1111/j.1440-1770.2007.00332.x

    Article  Google Scholar 

  • Ballot, A., Kotut, K., Novelo, E., & Krienitz, L. (2009). Changes of phytoplankton communities in lakes Naivasha and Oloidien, examples of degradation and salinization of lakes in the Kenyan Rift Valley. Hydrobiologia, 632(1), 359–363.

    CAS  Google Scholar 

  • Batabyal, A. K. (2014). Correlation and multiple linear regression analysis of groundwater quality data of Bardhaman District West Bengal, India. Int J Res Chem Environ, 4(4), 42–51.

    CAS  Google Scholar 

  • Benvenuti, M., Carnicelli, S., Belluomini, G., Dainelli, N., Di Grazia, S., Ferrari, G. A., Iasio, C., Sagri, M., Ventra, D., Atnafu, B., & Kebede, S. (2002). The Ziway-Shala basin (Main Ethiopian Rift, Ethiopia): A revision of basin evolution with special reference to the late quaternary. Journal of African Earth Sciences, 35, 247–269.

    Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2(2), 161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  • Boateng, T. K., Opoku, F., Acquaah, S. O., & Akoto, O. (2016). Groundwater quality assessment using statistical approach and water quality index in Ejisu- Juaben municipality, Ghana. Environment and Earth Science, 75, 489.

    Google Scholar 

  • Brown, R. M., McCleiland, N. J., Deininger, R. A., & O’Connor, M. F. (1972). A water quality index-crossing the psychological barrier. In Proceedings of the International Conference on Water Pollution Research, Jerusalem, 18-24 June 1972 (pp. 787–797).

    Google Scholar 

  • Christian, K. A., Dodoo, D. K., & Kortasi, B. K. (2014). The hydrochemistry of groundwater in some communities in the Ayensu River Basin in the central region of Ghana. Journal of Environment and Earth Science, 4(20), 50–65.

    Google Scholar 

  • CME. (2001). Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index 1.0, User’s Manual. Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Darvishi, G., Kootenaei, F. G., Ramezani, M., Lotfi, E., & Asgharnia, H. (2016). Comparative investigation of river water quality by OWQI, NSFWQI and Wilcox indexes (case study: The Talar River–IRAN). Archives of Environmental Protection, 42(1), 41–48.

    Google Scholar 

  • Desta, H., & Fetene, A. (2020). Land-use and land-cover change in Lake Ziway watershed of the Ethiopian Central Rift Valley Region and its environmental impacts. Land Use Policy, 96, 104682. https://doi.org/10.1016/j.landusepol.2020.104682

    Article  Google Scholar 

  • Desta, H., Lemma, B., & Gebremariam, E. (2017). Identifying sustainability challenges on land and water uses: The case of Lake Ziway watershed, Ethiopia. Applied Geography, 88, 130–143.

    Google Scholar 

  • Desta, Y., & Bersisa, M. (2019). Recreational use value of lakes an application of travel cost method: A case of Lake Ziway. International Journal of Economy, Energy and Environment, 4(3), 56–62. https://doi.org/10.2139/ssrn.3433029

    Article  Google Scholar 

  • Dhinamala, K., Pushpalatha, M., Samuel, T., & Raveen, R. (2015). Seasonal variation nutrients in Pulicat Lake, Tamil Nadu, India. International Journal of Fisheries and Aquatic Studies, 3(2), 264–267.

  • Dudgeon, D., Arthington, A. H., Gressner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182. https://doi.org/10.1017/S1464793105006950

    Article  Google Scholar 

  • Dutta, S., Dwivedi, A., & Suresh Kumar, M. (2018). Use of water quality index and multivariate statistical techniques for the assessment of spatial variations in water quality of a small river. Environmental Monitoring and Assessment, 190(12). https://doi.org/10.1007/s10661-018-7100-x

  • EHPEA. (2011) Assessment of development potentials and investment options in the export- oriented fruit and vegetable sector. Ethiopian Horticultural Development Agency.

  • ENMA. (2007). Metrological data base. Ethiopian National Meteorological Agency.

    Google Scholar 

  • Erikson, K. M., & Aschner, M. (2003). Manganese neurotoxicity and glutamate—GABA interaction. Neurochemistry International, 43, 475.

    CAS  Google Scholar 

  • EU (Council of the European Union) (1998). On the quality of water intended for human consumption, Council Directive 98/83/EC, OJ, 230: 1-10.

  • FEPA (Federal Environmental Protection Authority) (2003). Provisional Standards for Industrial Pollution Control in Ethiopia. Prepared under the Ecological Sustainable Development (ESID) Project US/ETH/99-068/Ethiopia, EPA/UNIDO, and Addis Ababa.

  • Forrest, J. (2000). Collecting water quality samples for dissolved metals in water. USEPA, Region 6. Water Quality Handbook (2nd ed.). EPA.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice Hall, Englewood Clifs.

  • Gaillardet, J., Viers, J., & Dupré, B. (2003). Trace elements in river waters. Treatise on Geochemistry., 5, 225–272.

    Google Scholar 

  • Gizaw, B. (1996). The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system. Journal of African Earth Sciences, 22(4), 391–402.

    CAS  Google Scholar 

  • Grzybowski, M., & Glińska-Lewczuk, K. (2019). Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodiversity and Conservation, 28, 4065–4097. https://doi.org/10.1007/s10531-019-01865-x

    Article  Google Scholar 

  • Güler, C., Thyne, G. D., McCray, J. E., & Turner, K. A. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), 455–474. https://doi.org/10.1007/s10040-002-0196-6

    Article  CAS  Google Scholar 

  • Gupta, S., & Gupta, S. K. (2021). A critical review on water quality index tool: Genesis, evolution and future directions. Ecological Informatics, 63, 101299. https://doi.org/10.1016/j.ecoinf.2021.101299

    Article  Google Scholar 

  • Harkins, D. R. (1974). An objective water quality index. Journal - Water Pollution Control Federation, 46, 588–591 http://www.jstor.com/stable/25038160.

    CAS  Google Scholar 

  • Hengsdijk, H., & Jansen, H. (2006). Agricultural development in the Central Ethiopian Rift Valley: A desk-study on water-related issues and knowledge to support a policy dialogue. Plant Research International B.V.

    Google Scholar 

  • Hordofa, A. T., Olkeba, T., Leta, T. A., & Abebe, D. C. (2022). Spatiotemporal trend analysis of temperature and rainfall over Ziway Lake Basin. Ethiopia Hydrology, 9(1), 2. https://doi.org/10.3390/hydrology9010002

    Article  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441. https://doi.org/10.1037/h0071325

  • Jaishankar, M., Mathew, B. B., Shah, M. S., & Gowda, K. R. S. (2014). Bio-sorption of few heavy metal ions using agricultural wastes. Journal of Environment Pollution and Human Health, 2(1), 16.

    Google Scholar 

  • Jirsa, F., Gruber, M., Stojanovic, A., Omondi, S. O., Mader, D., Körner, W., & Schagerl, M. (2013). Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught. Chemie der Erde - Geochemistry, 73(3), 275–282. https://doi.org/10.1016/j.chemer.2012.09.001

    Article  CAS  Google Scholar 

  • Kalsido, T., & Berhanu, B. (2020). Impact of land-use changes on sediment load and capacity reduction of Lake Ziway, Ethiopia. Natural Resources, 11, 530–542. https://doi.org/10.4236/nr.2020.1111031

    Article  Google Scholar 

  • Kazi, T., Arain, M., Jamali, M., Afridi, H., Sarfraz, R., Baig, J., & Shah, A. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301–309.

    CAS  Google Scholar 

  • Klemperer, S. L., & Cash, M. D. (2007). Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: Possible environmental impacts from underwater and borehole detonations. Journal of African Earth Sciences, 48(2-3), 174–198. https://doi.org/10.1016/j.jafrearsci.2006.10

    Article  CAS  Google Scholar 

  • Kükrer, S., & Mutlu, E. (2019). Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environmental Monitoring and Assessment, 191(71). https://doi.org/10.1007/s10661-019-7197-6

  • Kumar, N. K., Reddy, A. G. S., Reddy, R. M., & Srinivas, V. K. (2009). Preliminary investigation of groundwater quality in Hyderabad City Andhra Pradesh India. International Journal Chemical Sciences, 7(1), 59–70.

  • Lau, S., & Lane, S. (2002). Biological and chemical factors influencing shallow lake eutrophication: A long-term study. The Science of the Total Environment, 288, 167–181.

    CAS  Google Scholar 

  • Lencha, S. M., Tränckner, J., & Dananto, M. (2021). Assessing the water quality of Lake Hawassa Ethiopia–trophic state and suitability for anthropogenic uses–applying common water quality indices. International Journal of Environmental Research and Public Health, 18, 8904. https://doi.org/10.3390/ijerph18178904

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77–89. https://doi.org/10.1016/s0048-9697(02)00683-6

    Article  CAS  Google Scholar 

  • Lukhabi, D. K., Mensah, P. K., Asare, N. K., PulumukaKamanga, T., & Ouma, K. O. (2023). Adapted water quality indices: Limitations and potential for water quality monitoring in Africa. Water, 15, 1736. https://doi.org/10.3390/w15091736

    Article  CAS  Google Scholar 

  • Masresha, A. E., Skipperud, L., Rosseland, B. O., Zinabu, G. M., Meland, S., Teien, H. C., & Salbu, B. (2011). Speciation of selected trace elements in three Ethiopian Rift Valley Lakes (Koka, Ziway, and Awassa) and their major inflows. Science of the Total Environment, 409(19), 3955–3970. https://doi.org/10.1016/j.scitotenv.2011.06.051

    Article  CAS  Google Scholar 

  • Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (1988). Chemometrics: a textbook. Elsevier.

    Google Scholar 

  • Mechal, A., Shube, H., Godebo, T. R., Walraevens, K., & Birk, S. (2022). Application of multi-hydrochemical indices for spatial groundwater quality assessment: Ziway Lake Basin of the Ethiopian Rift Valley. Environmental Earth Sciences, 81(1), 25. https://doi.org/10.1007/s12665-021-10135-5

    Article  CAS  Google Scholar 

  • Menberu, Z., Mogesse, B., & Reddythota, D. (2021). Evaluation of water quality and eutrophication status of Hawassa Lake based on different water quality indices. Applied Water Science, 11(3). https://doi.org/10.1007/s13201-021-01385-6

  • Merga, L. B., Redondo-Hasselerharm, P. E., Van den Brink, P. J., & Koelmans, A. A. (2020). Distribution of microplastic and small macroplastic particles across four fish species and sediment in an African lake. Science of The Total Environment, 140527. https://doi.org/10.1016/j.scitotenv.2020.1405

  • Mergeay, J., Declerck, S., Verschuren, D., & de Meester, L. (2005). Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments. Freshwater Biology, 51(93), 399–411.

    Google Scholar 

  • Meshesha, D. T., Tsunekawa, A., & Tsubo, M. (2012). Continuing land degradation: Cause-effect in Ethiopia’s central rift valley. Land Degradation & Development 23:130–143. https://doi.org/10.1002/ldr.1061

  • Molla, H. A., Dagalo, S. H., & Wondimagegnehu, D. G. (2023). A pragmatic approach to the combined effect of climate change and water abstraction on Lake Ziway water balance, Ethiopia. Journal of Water and Climate Change, 14(1), 83. https://doi.org/10.2166/wcc.2022.201

    Article  Google Scholar 

  • Molla, M. A., & Fitsume, Y. D. (2017). Irrigation water quality of River Kulfo and its implication in irrigated agriculture, South West Ethiopia. International Journal of Water Resources and Environmental Engineering, 9(6), 127–132. https://doi.org/10.5897/ijwree2016.0703

    Article  CAS  Google Scholar 

  • Moon, Y., & Kim, H. (2021). Inter-annual and seasonal variations of water quality and trophic status of a reservoir with fluctuating monsoon precipitation. International Journal of Environmental Research and Public Health, 18, 8499. https://doi.org/10.3390/ijerph18168499

    Article  CAS  Google Scholar 

  • Ndungu, J., Augustijn, D. C., Hulscher, S. J., Fulanda, B., Kitaka, N., & Mathooko, J. M. (2015). A multivariate analysis of water quality in Lake Naivasha, Kenya. Marine and Freshwater Research, 66(2), 177. https://doi.org/10.1071/mf14031

    Article  CAS  Google Scholar 

  • Nicholson, S. E. (1996). A review of climate dynamics and climate variability in Eastern Africa. In T. C. Johnson & E. O. Odada (Eds.), The Limnology, Climatology and Paleoclimatology of the East African Lakes (pp. 25–56). Gordon and Breach.

    Google Scholar 

  • Nigussie, K., Chandravanshi, B. S., & Wondmu, T. (2010). Correlation among trace metals in Tilapia (Oreochromis niloticus), sediment and water samples of lakes Awassa and Ziway, Ethiopia. International Journal of Biological and Chemical Sciences, 4, 1641–1656.

    Google Scholar 

  • Ogutu-Ohwayo, R., Hecky, R. E., Cohen, A. S., et al. (1997). Human impacts on the African Great Lakes. Environmental Biology of Fishes, 50, 117–131. https://doi.org/10.1023/A:1007320932349

    Article  Google Scholar 

  • Oyoo-Okoth, E., Muchiri, M., Ngugi, C. C., Njenga, E. W., Ngure, V., Orina, P. S., Chemoiwa, E. C., & Wanjohi, B. K. (2011). Zooplankton partitioning in a tropical alkaline-saline endorheic Lake Nakuru, Kenya: Spatial and temporal trends in relation to the environment. Lakes & Reservoirs: Research & Management, 16(1), 35–47. https://doi.org/10.1111/j.1440-1770.2011.00461

    Article  CAS  Google Scholar 

  • Pearson, K. (1895). Notes on Regression and Inheritance in the Case of Two Parents. Proceedings of the Royal Society of London, 58, 240–242. https://doi.org/10.1098/rspl.1895.0041

    Article  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6, 559–572.

    Google Scholar 

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2008). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140(1-3), 43–59. https://doi.org/10.1007/s10661-007-9846-4

    Article  CAS  Google Scholar 

  • Rango, T., Bianchini, G., Beccaluva, L., Ayenew, T., & Colombani, N. (2009). Hydrogeochemical study in the main Ethiopian Rift: New insights to source and enrichment mechanism of fuoride. Environmental Geology, 58, 109–118.

    CAS  Google Scholar 

  • Reimann, C., Bjorvatn, K., Frengstad, B., Melaku, Z., Tekle- Haimanot, R., & Siewers, U. (2003). Drinking water quality in the Ethiopian section of the East African Rift Valley Iedata and health aspects. Sci Total Environ, 311(1–3), 65–80.

    CAS  Google Scholar 

  • Saturday, A., Kangume, S., & Bamwerinde, W. (2023). Content and dynamics of nutrients in the surface water of shallow Lake Mulehe in Kisoro District, South–western Uganda. Applied Water Science, 13, 150. https://doi.org/10.1007/s13201-023-01953-y

    Article  Google Scholar 

  • Scholten, W. (2007). Agricultural development and water use in the Central Rift Valley of Ethiopia: A rapid appraisal report. University of Twente.

    Google Scholar 

  • Srinivasamoorthy, K., Vasanthavigar, M., Chidambaram, S., Anandhan, P., Manivannan, R., & Rajivgandhi, R. (2012). Hydrochemistry of groundwater from Sarabanga Minor Basin, Tamil Nadu, India. Int Acad Ecol Environ Sci, 2, 193–203.

    CAS  Google Scholar 

  • Street, F.A. (1979). Late quaternary lakes in the Ziway-Shala basin, southern Ethiopia (UK). PhD Thesis.

  • Sunkari, E. D., Abu, M., Bayowobie, P. S., & Dokuz, U. E. (2019). Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: Implication for domestic and irrigation purposes. Groundwater for Sustainable Development, 8, 501–511. https://doi.org/10.1016/j.gsd.2019.02.002

    Article  Google Scholar 

  • Tamire, G., & Mengistou, S. (2012). Macrophyte species composition, distribution and diversity in relation to some physicochemical factors in the littoral zone of Lake Ziway. Ethiopia. African Journal of Ecology, 51(1), 66–77. https://doi.org/10.1111/aje.12007

    Article  Google Scholar 

  • Tebeje, Z. (2012). Ground water quality determination of former Lake Haramaya, Haramaya District, Eastern Haranghe Zone, Oroma Regional State, Ethiopia. Journal of Applied Sciences and Environmental Management, 16(3), 245–252.

    Google Scholar 

  • Teffera, F. E., Lemmens, P., Deriemaecker, A., Deckers, J., Bauer, H., Gamo, F. W., Brendonck, L., & De Meester, L. (2018). Why are Lake Abaya and Lake Chamo so different? A limnological comparison of two neighboring major Ethiopian Rift Valley lakes. Hydrobiologia. https://doi.org/10.1007/s10750-018-3707-8

  • Tekle-Haimanot, R., Melaku, Z., Kloos, H., Reimann, C., Fantaye, W., Zerihun, L., & Bjorvatn, K. (2006). The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ, 367, 182–190.

    CAS  Google Scholar 

  • Teklu, B. M., Hailu, A., Wiegant, D. A., Scholten, B. S., & Van den Brink, P. J. (2018). Impacts of nutrients and pesticides from small-and large-scale agriculture on the water quality of Lake Ziway, Ethiopia. Environmental Science and Pollution Research, 25(14), 13207–13216. https://doi.org/10.1007/s11356-016-6714-1

    Article  CAS  Google Scholar 

  • Teshome, F. (2020). Seasonal water quality index and suitability of the water body to designated uses at the eastern catchment of Lake Hawassa. Environmental Science and Pollution Research, 27, 279–290.

    CAS  Google Scholar 

  • Thu, T., Le, H., Zeunert, S., Lorenz, M., & Meon, G. (2017). Multivariate statistical assessment of a polluted river under nitrification inhibition in the tropics. Environmental Science and Pollution Research, 24, 13845–13862. https://doi.org/10.1007/s11356-017-8989-2

    Article  CAS  Google Scholar 

  • Tibebe, D., Zewge, F., Lemma, B., & Kassa, Y. (2022). Assessment of spatio-temporal variations of selected water quality parameters of Lake Ziway, Ethiopia using multivariate techniques. BMC Chemistry, 16. https://doi.org/10.1186/s13065-022-00806-0

  • Tilahun, G., & Ahlgren, G. (2010). Seasonal variations in phytoplankton biomass and primary production in the Ethiopian Rift Valley lakes Ziway,Awassa and Chamo–The basis for fish production. Limnologica, 40, 330–342. https://doi.org/10.1016/j.limno.2009.10.005

    Article  CAS  Google Scholar 

  • Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. Am J Water Resour, 1(3), 34–38.

    Google Scholar 

  • Umer, A., Assefa, B., & Fito, J. (2020). Spatial and seasonal variation of lake water quality: Beseka in the Rift Valley of Oromia region, Ethiopia. Int J Energ Water Res, 4, 47–54.

    Google Scholar 

  • USEPA. (2000). Nutrient Criteria Technical Guidance Manual, Lakes and Reservoirs, US EPA, , EPA 822-B 00-001.

    Google Scholar 

  • USEPA. (2003). National Management Measures for the Control of Nonpoint Pollution from Agirculture EPA 841-B-03-004 (pp. 243–246). US Environmental Protection Agency Office of Water.

    Google Scholar 

  • USEPA. (2005). An ecological assessment of western streams and rivers; EPA 620/R-05/005. United States Environmental protection Agency, Office of Research and Development.

    Google Scholar 

  • Utaile, Y., & Sulaiman, H. (2016). Assessment of water quality parameters of Lake Chamo–implications for freshwater fishes, Gamo Gofa Zone, Southern Ethiopia. Journal of Hill Agriculture, 7(2), 237–241.

    Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.

    CAS  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.1050084

    Article  Google Scholar 

  • WHO. (2011) Guidelines for drinking water quality. .

    Google Scholar 

  • Wu, Z., Lai, X., & Li, K. (2021). Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecological Indicators, 121, 107021. https://doi.org/10.1016/j.ecolind.2020.107021

    Article  CAS  Google Scholar 

  • Yohannes, Y. B., Ikenaka, Y., Saengtienchai, A., Watanabe, K. P., Nakayama, S. M. M., & Ishizuka, M. (2014). Concentrations and human health risk assessment of organochlorine pesticidesin edible fish species from aRiftValleylake— Lake Ziway, Ethiopia. Ecotoxicology and Environmental Safety, 106, 95–101.

    CAS  Google Scholar 

  • Yongo, E., Agembe, S. W., Manyala, J. O., & Mutethya, E. (2022). Assessment of the current trophic state and water quality of Lake Naivasha, Kenya using multivariate techniques. Lakes & Reservoirs: Research & Management, 27, e12422. https://doi.org/10.1111/lre.12422

    Article  CAS  Google Scholar 

  • Zemed, M., Mogesse, B., & Reddythota, D. (2021). Evaluation of water quality and eutrophication status of Hawassa Lake based on different water quality indices. Applied Water Science, 11, 1–10.

    Google Scholar 

  • Zinabu, G. (2002). The effects of wet and dry seasons on concentrations of solutes and phytoplankton biomass in seven Ethiopian rift-valley lakes. Limnologica, 32(2), 169–179.

    CAS  Google Scholar 

  • Zinabu, G. M., & Pearce, N. J. G. (2003). Concentrations of heavy metals and related trace elements in some Ethiopian rift-valley lakes and their in-flows. Hydrobiologia, 429, 171–178. https://doi.org/10.1023/A:1024856207478

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Adama Science and Technology University (ANSD/02/1252/09) for providing the funding necessary for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Mechal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechal, A., Fekadu, D. & Abadi, B. Multivariate and Water Quality Index Approaches for Spatial Water Quality Assessment in Lake Ziway, Ethiopian Rift. Water Air Soil Pollut 235, 78 (2024). https://doi.org/10.1007/s11270-023-06882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06882-9

Keywords

Navigation