Skip to main content
Log in

Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Three common stochastic tools, the climacogram i.e. variance of the time averaged process over averaging time scale, the autocovariance function and the power spectrum are compared to each other to assess each one’s advantages and disadvantages in stochastic modelling and statistical inference. Although in theory, all three are equivalent to each other (transformations one another expressing second order stochastic properties), in practical application their ability to characterize a geophysical process and their utility as statistical estimators may vary. In the analysis both Markovian and non Markovian stochastic processes, which have exponential and power-type autocovariances, respectively, are used. It is shown that, due to high bias in autocovariance estimation, as well as effects of process discretization and finite sample size, the power spectrum is also prone to bias and discretization errors as well as high uncertainty, which may misrepresent the process behaviour (e.g. Hurst phenomenon) if not taken into account. Moreover, it is shown that the classical climacogram estimator has small error as well as an expected value always positive, well-behaved and close to its mode (most probable value), all of which are important advantages in stochastic model building. In contrast, the power spectrum and the autocovariance do not have some of these properties. Therefore, when building a stochastic model, it seems beneficial to start from the climacogram, rather than the power spectrum or the autocovariance. The results are illustrated by a real world application based on the analysis of a long time series of high-frequency turbulent flow measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Chen Y, Sun R, Zhou A (2010) An improved hurst parameter estimator based on fractional Fourier transform. Telecommun Syst 43(3/4):197–206

    Article  Google Scholar 

  • Dimitriadis P, Koutsoyiannis D, Markonis Y (2012) Spectrum vs climacogram, European Geosciences Union General Assembly 2012, Geophysical Research Abstracts, Vienna, Session HS7.5/NP8.3: Hydroclimatic stochastics, EGU2012-993

  • Fleming SW (2008) Approximate record length constraints for experimental identification of dynamical fractals. Ann Phys (Berlin) 17(12):955–969

    Article  Google Scholar 

  • Fourier J (1822) Théorie analytique de la chaleur. Firmin Didot Père et Fils, Paris

    Google Scholar 

  • Gilgen HJ (2006) Univariate time series in geosciences: theory and examples. Springer, Berlin

    Google Scholar 

  • Hassani H (2010) A note on the sum of the sample autocorrelation function. Phys A 389:1601–1606

    Article  CAS  Google Scholar 

  • Hassani H (2012) The sample autocorrelation function and the detection of long-memory processes. Phys A 391:6367–6379

    Article  Google Scholar 

  • Hurst HE (1951) Long term storage capacities of reservoirs. Trans. Am. Soc. Civil Engrs. 116, 776–808

  • Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160

    Article  Google Scholar 

  • Khintchine A (1934) Korrelationstheorie der stationären stochastischen Prozesse. Math Ann 109(1):604–615

    Article  Google Scholar 

  • Kolmogorov AN (1941) Dissipation energy in locally isotropic turbulence, Dokl. Akad. Nauk. SSSR 32:16–18

  • Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595

    Article  Google Scholar 

  • Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48(1):3–24

    Article  Google Scholar 

  • Koutsoyiannis D (2010) A random walk on water. Hydrol Earth Syst Sci 14:585–601

    Article  Google Scholar 

  • Koutsoyiannis D (2012) Re-establishing the link of hydrology with engineering, Invited lecture at the National Institute of Agronomy of Tunis (INAT), Tunis

  • Koutsoyiannis D (2013a) Encolpion of stochastics: fundamentals of stochastic processes, p 12, Department of Water Resources and Environmental Engineering—National Technical University of Athens, Athens

  • Koutsoyiannis D (2013b) Climacogram-based pseudospectrum: a simple tool to assess scaling properties, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol 15, Vienna, EGU2013-4209, European Geosciences Union

  • Lombardo F, Volpi E, Koutsoyiannis D (2013) Effect of time discretization and finite record length on continuous-time stochastic properties, IAHSIAPSOIASPEI Joint Assembly, Gothenburg, Sweden, International Association of Hydrological Sciences, International Association for the Physical Sciences of the Oceans, International Association of Seismology and Physics of the Earth’s Interior

  • Lombardo F, Volpi E, Papalexiou S, Koutsoyiannis D (2014) Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology. Hydrol Earth Syst Sci 18:243–255

    Article  Google Scholar 

  • Mandelbrot BB (1977) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Papalexiou SM, Koutsoyiannis D, Makropoulos C (2013) How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol Earth Syst Sci 17:851–862

    Article  Google Scholar 

  • Papoulis A (1991) Probability, random variables and stochastic processes, 3rd edn. McGraw Hill, New York

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Pope SB (2000) Turbulent Flows. Cambridge University Press

  • Stoica P, Moses R (2004) Spectral analysis of samples. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process. Stoch Environ Res Risk Assess 25(1):21–33

    Article  Google Scholar 

  • Wiener N (1930) Generalized harmonic analysis. Acta Math 55:117–258

    Article  Google Scholar 

Download references

Acknowledgments

This paper was partly funded by the Greek General Secretariat for Research and Technology through the research project “Combined REnewable Systems for Sustainable ENergy DevelOpment” (CRESSENDO; Programme ARISTEIA II; Grant Number 5145). We thank the anonymous Associate Editor and the three anonymous Reviewers for the constructive comments which helped us to improve the paper, as well as the Springer Correction Team for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayiotis Dimitriadis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3777 kb)

Appendix

Appendix

Here, we express the expected value of the discrete time autocovariance in terms only of its true continuous time value using the corresponding true climacogram. This is very useful in stochastic modelling as it saves computational time (compared to a direct calculation where a sum throughout all the discrete time autocovariances is needed) and also because it gives a physical interpretation of the expected discrete time autocovariance.

Equation 2 can be expressed in terms of the true discrete autocovariance:

$$ \gamma (k\Delta ) = \frac{1}{{k^{2} }}\mathop \sum \limits_{i = 1}^{k} \mathop \sum \limits_{j = 1}^{k} c_{d}^{(\Delta )} (i - j) = \frac{2}{{k^{2} }}\mathop \sum \limits_{i = 1}^{k - 1} \left( {k - i} \right)c_{d}^{(\Delta )} (i) + \frac{\gamma (\Delta )}{k} $$
(37)

The estimation of autocovariance in Eq. 9 can be analysed to:

$$ \begin{aligned}{\text{E}}\left[ {\widehat{{\underline{c}}}_{d}^{\Delta } \left( j \right)} \right] &= {\text{E}}\left[{\frac{1}{\zeta \left( j \right)}\sum\limits_{l = 1}^{n} {\left( {\widehat{{\underline{x} }}_{l}^{\left( \Delta \right)} - \frac{1}{n}\left( {\sum\limits_{l = 1}^{n} {\widehat{{\underline{x}}}_{l}^{\left( \Delta \right)} } } \right)} \right)\;\left( {\widehat{{\underline{x} }}_{i + j}^{\left( \Delta \right)} - \frac{1}{n}\left( {\sum\limits_{l = 1}^{n} {\widehat{{\underline{x} }}_{l}^{\left( \Delta \right)} } } \right)} \right)} } \right]\\& = \frac{1}{\zeta (j)}\sum\limits_{i = 1}^{n - j} {{\text{E}}\left[ {\left( {\left( {\widehat{{\underline{x}}}_{i}^{\left( \Delta \right)} - \mu } \right) - \left({\frac{1}{n}\left( {\sum\limits_{l = 1}^{n} {\widehat{{\underline{x}}}_{l}^{\left( \Delta \right)} } } \right) - \mu } \right)}\right)\;\left( {\left( {\widehat{{\underline{x} }}_{i+j}^{\left(\Delta \right)} - \mu } \right) - \left( {\frac{1}{n}\left({\sum\limits_{l = 1}^{n} {\widehat{{\underline{x} }}_{l}^{\left(\Delta \right)} } } \right) - \mu } \right)} \right)} \right]}\\& = \frac{1}{\zeta \left( j \right)}\sum\limits_{i = 1}^{n - j} \left\{\overbrace {{{\text{E}}\left[ {\left( {\widehat{{\underline{x} }}_{i}^{\left( \Delta \right)} - \mu } \right)\left( {\widehat{{\underline{x} }}_{i + j}^{\left( \Delta \right)} - \mu } \right)} \right]}}^{{{\text{E}}1}} - \overbrace{{{\text{E}}\left[ {\left( {\widehat{{\underline{x} }}_{i}^{\left(\Delta \right)} - \mu } \right)\left( {\frac{1}{n}\left({\sum\limits_{l = 1}^{n} {\widehat{{\underline{x} }}_{l}^{\left(\Delta \right)} } } \right) - \mu } \right)} \right]}}^{{{\text{E}}2}} - \overbrace {{{\text{E}}\left[ {\left( {\widehat{{\underline{x} }}_{i}^{\left( \Delta \right)} - \mu } \right)\left( {\frac{1}{n}\left( {\sum\limits_{l = 1}^{n} {\widehat{{\underline{x} }}_{l}^{\left( \Delta \right)} } } \right) - \mu } \right)} \right]}}^{{{\text{E}}3}}\right.\\ &+\left. \overbrace{{\text{E}}\left[\left(\frac{1}{n}\left( {\sum\limits_{l = 1}^{n} {\widehat{{\underline{x} }}_{l}^{\left( \Delta \right)} } }\right)- \mu \right)^{2}\right]}^{\text{E4}} \right\}\end{aligned}$$
(38)

where \( \mu = {\text{E}}\left[ {\widehat{{\underline{x} }}_{i}^{(\Delta )} } \right] \).

Below we will express the above sums of expressions E1, E2, E3 and E4 in terms of the true climacogram \( \gamma (\Delta k) \) and true autocovariance in discrete time \( c_{d}^{(\Delta )} (j) \) for j ≥ 1. Firstly, the sum of E1 is:

$$ \mathop \sum \limits_{i = 1}^{n - j} {\text{E}}1 = \left( {n - j} \right)c_{d}^{(\Delta )} (j) $$
(39)

We observe that \( \mathop \sum \nolimits_{i = 1}^{n - j} {\text{E}}2 = \mathop \sum \nolimits_{i = 1}^{n - j} {\text{E}}3 \) and thus, we only calculate the sum of E3:

$$ \begin{aligned} & \mathop \sum \limits_{i = 1}^{n - j} {\text{E}}3 = \frac{1}{n}\mathop \sum \limits_{i = 1}^{n - j} \mathop \sum \limits_{l = 1}^{n} {\rm E}\left[ {\left( {\widehat{{\underline{x} }}_{i + j}^{\left( \Delta \right)} - \mu } \right)\left( {\widehat{{\underline{x} }}_{l}^{\left( \Delta \right)} - \mu } \right)} \right] = \frac{1}{n}\mathop \sum \limits_{i = 1}^{n - j} \mathop \sum \limits_{l = 1}^{n} c_{d}^{\left( \Delta \right)} \left( {l - i - j} \right) \\ & = \frac{{\left( {n - j} \right)^{2} \gamma (\Delta \left( {n - j} \right))}}{n} + \frac{1}{n}\overbrace {{\sum\limits_{i = 1}^{n - j} {\sum\limits_{l = 1}^{j} {c_{d}^{\left( \Delta \right)} \left( {l - i - j} \right)} } }}^{{{\text{E}}5}} \\ \end{aligned} $$
(40)

The sum of E4 can be expressed in terms of the true climacogram:

$$ \mathop \sum \limits_{i = 1}^{n - j} {\rm E4} = \left( {n - j} \right) {\text{Var}}\left[ {\frac{1}{n}\left( {\mathop \sum \limits_{l = 1}^{n} \widehat{{\underline{x} }}_{l}^{\left( \Delta \right)} } \right)} \right] = \left( {n - j} \right) \gamma \left( {n\Delta } \right) $$
(41)

For the estimation of E5, we distinguish two cases, j ≤ n/2 and j > n/2. For the first case, we have:

$$ {\text{E}}5\left( {j \le \frac{n}{2}} \right) = \frac{j}{n}\mathop \sum \limits_{i = j}^{n - j} c_{d}^{\left( \Delta \right)} \left( i \right) + \frac{1}{n}\mathop \sum \limits_{i = 1}^{j - 1} ic_{d}^{\left( \Delta \right)} \left( i \right) + \frac{1}{n}\mathop \sum \limits_{i = n - j + 1}^{n - 1} c_{d}^{\left( \Delta \right)} \left( i \right)\left( {n - i} \right) = \frac{{j\gamma \left( \Delta \right) - j^{2} \gamma (j\Delta )}}{2n} + \overbrace {{\frac{1}{n}\mathop \sum \limits_{i = n - j + 1}^{n - 1} c_{d}^{\left( \Delta \right)} \left( i \right)\left( {n - i} \right) + j\mathop \sum \limits_{i = 1}^{n - j} c_{d}^{\left( \Delta \right)} \left( i \right)}}^{{{\text{E}}6}} $$
(42)

For the estimation of E6, we have:

$$ {\text{E}}6 = n\gamma \left( {n\Delta } \right)/2 - \gamma \left( \Delta \right)/2 + \overbrace {{\frac{1}{n}\mathop \sum \limits_{i = 1}^{n - j} c_{d}^{\left( \Delta \right)} \left( {j - n + i} \right)}}^{{{\text{E}}7}} $$
(43)

and E7 can be expressed as:

$$ {\text{E}}7 = \left( {n - j} \right)\gamma \left( \Delta \right)/\left( {2n} \right) - \left( {n - j} \right)^{2} \gamma \left( {\left( {n - j} \right)\Delta } \right)/\left( {2{\text{n}}} \right) $$
(44)

For j > n/2, E5 is the same as for j ≤ n/2 but with replacing j with nj and thus, in the general case of E5:

$$ {\text{E}}5 = n\gamma \left( {n\Delta } \right)/2 - j^{2} \gamma \left( {j\Delta } \right)/\left( {2n} \right) - \left( {n - j} \right)^{2} \gamma \left( {\left( {n - j} \right)\Delta } \right)/\left( {2n} \right) $$
(45)

Thus, Eq. A.2 results in:

$$ {\text{E}}\left[ {\widehat{{\underline{c} }}_{d}^{\left( \Delta \right)} \left( j \right)} \right] = \frac{1}{\zeta \left( j \right)}\left( {\left( {n - j} \right)c_{d}^{\left( \Delta \right)} \left( j \right) + \frac{{j^{2} }}{n}\gamma \left( {j\Delta } \right) - j\gamma \left( {n\Delta } \right) - \frac{{\left( {n - j} \right)^{2} }}{n}\gamma \left( {\left( {n - j} \right)\Delta } \right)} \right) $$
(46)

where \( \zeta \left( j \right) \) is usually taken as: n or n−1 or n−j.

It is interesting to notice that using Eq. 7 we can express the expected discrete time autocovariance of the above using only the true climacogram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriadis, P., Koutsoyiannis, D. Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stoch Environ Res Risk Assess 29, 1649–1669 (2015). https://doi.org/10.1007/s00477-015-1023-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1023-7

Keywords

Navigation