Skip to main content
Log in

Classes of compactly supported covariance functions for multivariate random fields

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The paper combines simple general methodologies to obtain new classes of matrix-valued covariance functions that have two important properties: (i) the domains of the compact support of the several components of the matrix-valued functions can vary between components; and (ii) the overall differentiability at the origin can also vary. These models exploit a class of functions called here the Wendland–Gneiting class; their use is illustrated via both a simulation study and an application to a North American bivariate dataset of precipitation and temperature. Because for this dataset, as for others, the empirical covariances exhibit a hole effect, the turning bands operator is extended to matrix-valued covariance functions so as to obtain matrix-valued covariance models with negative covariances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The support of a function \(h(\cdot ):{\mathrm{I}}\!{\mathrm{R}}^d\;\mapsto\; {{\mathrm{I}}\!{\mathrm{R}}_+}\) say, is the set \(\{y:h(y)\ne 0\}\). When \(h\) is continuous this set is typically open; when the support set is bounded its closure is compact. In writing “a function has compact support,” we mean that “the support of the function has compact closure.”

References

  • Alonso-Malaver C, Porcu E, Giraldo R (2013a) Multivariate and multiradial Schoenberg measures with their dimension walk, Technical Report, Universidad Federico Santa Maria, Casilla, Valparaiso

  • Alonso-Malaver C, Porcu E, Giraldo R (2013b) Multivariate versions of walks through dimensions and Schoenberg measures, Technical Report, Universidad Federico Santa Maria, Valparaiso

  • Apanasovich T, Genton M (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97:15–30

    Article  Google Scholar 

  • Apanasovich T, Genton M, Sun Y (2012) A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. J Am Stat Assoc 107:180–193

    Article  Google Scholar 

  • Askey R (1973) Radial characteristic functions. Research Center, University of Wisconsin-Madison, Technical report, Madison

  • Cramér H (1940) On the theory of stationary random processes. Ann Math 41:215–230

    Article  Google Scholar 

  • Du J, Ma C (2013) Vector random fields with compactly supported covariance matrix functions. J Stat Plan Inference 143:457–467

    Article  Google Scholar 

  • Du J, Zhang H, Mandrekar V (2009) Infill asymptotic properties of tapered maximum likelihood estimators. Ann Stat 37:3330–3361

    Article  Google Scholar 

  • Furrer R, Genton M, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15:502–523

    Article  Google Scholar 

  • Gaspari G, Cohn S (1999) Construction of correlation functions in two and three dimensions. Quart J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Gneiting T (1999a) Correlation functions for atmospheric data analysis. Quart J R Meteorol Soc 125:2449–2464

    Article  Google Scholar 

  • Gneiting T (1999b) On the derivatives of radial positive definite functions. J Math Anal Appl 236:86–93

    Article  Google Scholar 

  • Gneiting T (2002) Compactly supported correlation functions. J Multivar Anal 83:493–508

    Article  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167–1177

    Article  CAS  Google Scholar 

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24:269–282

    Article  Google Scholar 

  • Hoef JV, Barry R (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inference 69:275–294

    Article  Google Scholar 

  • Hristopoulos D, Porcu E (2014) Vector Spartan spatial random field models. Probab Eng Mech 37:84–92

    Article  Google Scholar 

  • Kaufman K, Schervish M, Nychka D (2008) Covariance tapering for likelihood-based estimation in large spatial datasets. J Am Stat Assoc 103:1545–1555

    Article  CAS  Google Scholar 

  • Kleiber W, Nychka D (2011) Nonstationary multivariate spatial covariance modeling. Technical Report, NCAR

  • Kleiber W, Porcu E (2014) Nonstationary matrix covariances: compact support, long range dependence and adapted spectra. Stoch Environ Res Risk Assess 29(1):193–204

  • Li B, Zhang H (2011) An approach to modeling asymmetric multivariate spatial covariance structures. J Multivar Anal 102:1445–1453

    Article  Google Scholar 

  • Majumdar A, Gelfand A (2007) Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math Geol 39:225–245

    Article  CAS  Google Scholar 

  • Matheron G (1963) Traité de Géostatistique appliquée. Editions Technip, Paris

    Google Scholar 

  • Porcu E, Zastavnyi V (2011) Characterization theorems for some classes of covariance functions associated to vector valued random fields. J Multivar Anal 102:1293–1301

    Article  Google Scholar 

  • Porcu E, Daley D, Buhmann M, Bevilacqua M (2013) Radial basis functions with compact support for multivariate geostatistics. Stoch Environ Res Risk Assess 27(4):909–922

    Article  Google Scholar 

  • Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space-time covariance functions. Stoch Environ Res Risk Assess 21:113–122

    Article  Google Scholar 

  • Ruiz-Medina M, Porcu E (2014) Equivalence of Gaussian measures for vector-valued random fields. Stoch Environ Res Risk Assess. doi:10.1007/s00477-014-0926-z

  • Sain M, Furrer R, Cressie N (2011) spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. Ann Appl Stat 5(1):150–170

    Article  Google Scholar 

  • Sun Y, Li B, Genton M, (2012) Geostatistics for large datasets, in space-time processes and challenges related to environmental problems. In: Porcu E, Montero JM, Schlather M (eds) Proceedings of the Spring school advances and challenges in space-time modelling of natural events, Springer, Berlin

  • Wackernagel H (2003) Multivariate geostatistics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  Google Scholar 

  • Yaglom A (1987) Correlation theory of stationary and related random functions. Springer, Berlin Heidelberg

    Google Scholar 

  • Zastavnyi V, Trigub R (2002) Positive definite splines of special form (in Russian), Matematicheski Sbornik (English trans: Sb. Math. 193, 1771–1800), 193,12, pp 41–68

Download references

Acknowledgments

The authors are grateful to a Referee and to the Associate Editor for their thorough reports which allowed for a considerably improved version of the manuscript. Moreno Bevilacqua acknowledges the Project “Fondecyt Iniciación”. Emilio Porcu has been supported by the Grant “Rientro Cervelli” from Regione Sardegna and now by Fondecyt Regular from Chilean Ministry of Education. Daryl J. Daley’s work was done while visiting the Universities of Sassari, Ciudad Real, Valparaiso and Federico Santa Maria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Porcu.

Appendices

Appendix 1: Concerning the Montée Operator

We collect some facts used in the proof of the main result of the paper.

It is convenient to write \(I f(t) :=\int _t^\infty u f(u)\,{\mathrm{d}}u\) for an unnormalized operator for the same functions \(f\), not least because the Wendland function \(\psi _{\nu ,k}\) is defined by \(I^k\psi _{\nu ,0}\) and the Wendland–Gneiting function by its normalized version \({\widetilde{\psi }}_{\nu ,k}(t) = I^k \psi _{\nu ,0}(t)/I^k \psi _{\nu ,0}(0)\) (and this quantity equals \({\widetilde{I}}^k\psi _\nu (t)\,)\). Now

$$\begin{aligned} \big (I^2 f\big )(t)&= \int _t^1 v\,{\mathrm{d}}v\int _v^1 u\,f(u)\,{\mathrm{d}}u \,=\, \int _t^1 u\,f(u)\,{\mathrm{d}}u\int _t^u v\,{\mathrm{d}}v \\&= \int _t^1 u\,f(u)\,{\mathrm{d}}u\int _{t^2}^{u^2} {\textstyle \frac{1}{2}}{\mathrm{d}}w \, =\, {\textstyle \frac{1}{2}}\int _t^1 u(u^2-t^2)\,f(u)\,{\mathrm{d}}u, \end{aligned}$$

and routine induction shows that for any function \(f:{{\mathrm{I}}\!{\mathrm{R}}_+} \, \mapsto \, {\mathrm{I}}\!{\mathrm{R}}\) with support bounded by \([0,1]\) and for which the integrals concerned are well defined,

$$\begin{aligned} I^k f (t) = \int _t^1 u(u^2-t^2)^{k-1}\,f(u)\,{\mathrm{d}}u\big /2^{k-1}\Gamma (k), \quad k=1,2,\ldots ; \end{aligned}$$

for \(k=0\) define \(I^0\) as the identity operator, so that \(I^0f(t)\) is identically equal to \(f(t)\) for all \(t \ge 0\). From this it follows that for \(k\ge 1\) the Wendland–Gneiting function \(\widetilde{I}^k \psi _{\nu }={\widetilde{\psi }}_{\nu ,k}\) is given by

$$\begin{aligned} {\widetilde{\psi }}_{\nu ,k}(t) = \frac{\big (I^k(1-\cdot )_+^\nu \big ) (t)}{\big (I^k(1-\cdot )_+^\nu \big ) (0)} = \int _t^1 \frac{u(u^2-t^2)^{k-1}\,(1-u)_+^{\nu }}{B(2k,\nu +1)} \,{\mathrm{d}}u \qquad (0\le t\le 1). \end{aligned}$$
(18)

Analogous arguments in Zastavnyi and Trigub (2002) give the equivalent expression valid for \(\nu >0\),

$$\begin{aligned} {\widetilde{\psi }}_{\nu ,k}(t) = \int _t^1 (u^2-t^2)^k (1-u)^{\nu -1}\,{\mathrm{d}}u \big /B(2k+1,\nu ); \end{aligned}$$
(19)

integration by parts in (18) yields (19).

Appendix 2: Proofs of the technical Lemmas

1.1 2.1: An elementary inequality

The proofs of the lemmas in Section 3 invoke simple inequalities between functions \(g: {\mathrm{I}}\!{\mathrm{R}}_+ \, \mapsto \, [0,1]\) (or a sub-interval of [0,1]) of the form

$$\begin{aligned} g(t) := g(t; \alpha , \gamma ,b,c) = c t^\alpha \psi _{\gamma } \Big (\frac{t}{b}\Big ), \end{aligned}$$

where \(\alpha >0\), \(\gamma \ge 0\), \(b>0\) and \(c>0\). Define the function \(g_1 := g(t; \alpha _1, \gamma _1, b_1, c_1)\) similarly.

Proposition B

(a) Given any functions \(g\) as at (4) and \(g_1\) as described, if the inequality

$$\begin{aligned} g(t)\ge g_1(t)\qquad (\hbox {all }\,t\in {{\mathrm{I}}\!{\mathrm{R}}_+}) \quad \quad \quad {(*)} \end{aligned}$$

holds then necessarily \(\alpha _1\ge \alpha \) and \(b_1\le b\).

(b) For \((*)\) to hold it is necessary and sufficient that exactly one of the sets of conditions (A)–(F) below should hold; in these conditions, \(\Delta _\alpha =\alpha _1-\alpha ,\) \(\Delta _\gamma = \gamma _1-\gamma , \, \) \(q_1(t) = \gamma b_1 - \gamma _1 b -\Delta _\alpha (b+b_1) + \Delta _\gamma t\) and \(q_2(t) = \Delta _\alpha (bb_1+t^2) + t\,q_1(t)\!:\)

  1. (A)

    \(\alpha _1=\alpha \) and \(b_1 = b\) and \(c_1\le c\) and \(\gamma _1 \ge \gamma; \)

  2. (B)

    \(\alpha _1=\alpha \) and \(b_1 < b\) and \(c_1\le c\) and \(\gamma _1 b\ge \gamma b_1;\)

  3. (C)

    \(\alpha _1=\alpha \) and \(b_1 < b\) and \(c_1\le c\) and \(\gamma _1 b < \gamma b_1\) and \( c \ge c_1 \Big (\frac{\gamma _1}{b_1}\Big )^{\gamma _1} \Big (\frac{\gamma }{b}\Big )^{-\gamma } \Big (\frac{-\Delta _\gamma }{b-b_1}\Big )^{-\Delta _\gamma }; \)

  4. (D)

    \(\alpha _1>\alpha \) and \(b_1 = b\) and \(\gamma _1=\gamma \) and \(c\ge c_1 b_1^{\Delta _\alpha };\)

  5. (E)

    \(\alpha _1>\alpha \) and \(b_1 = b\) and \(\gamma _1>\gamma \) and \(c\ge c_1b_1^{\Delta _\alpha } (\Delta _\gamma /\Delta _\alpha )^{\Delta _\gamma } \big / (1+\Delta _\gamma /\Delta _\alpha )^{\Delta _\alpha +\Delta _\gamma };\)

  6. (F)

    \(\alpha _1>\alpha \) and \(b_1 < b\) and \(k(t_0)\le 1,\) where \(k(\cdot )\) is given by (20) and \(t_0\) is the zero in \((0,b_1)\) of \(q_2(t)=0.\)

Proof

The function \(g\) has support \(\{t:g(t)>0\} = (0,b)\). so that when \((*)\) holds we must have \((0,b)\supseteq (0,b_1)\), and then \((*)\) is equivalent by virtue of continuity of \(g\) and \(g_1\) and the positivity of \(g\) on \((0,b_1)\) to

$$\begin{aligned} k(t) := \frac{g_1(t)}{g(t)}\,=\, \frac{c_1 t^{\Delta _\alpha } (1 - t/b_1)^{\gamma _1}}{c(1-t/b)^\gamma } \le 1 \quad (0\,<\,t\,<\,b_1). \end{aligned}$$
(20)

Here \(k\) inherits continuity from \(g\) and \(g_1\) on its range of interest. If \(\alpha _1<\alpha \), then \(k(t)>1\) for sufficiently small positive \(t\), so for \((*)\), necessarily \(\alpha _1\ge \alpha \). Part (a) is established.

Part (b) lists sets of conditions which, consistent with part (a), are exhaustive with respect to the possible parameter sets \(\{\alpha _1\ge \alpha \}\) and \(\{b_1\le b\}\). The list then stipulates sufficient conditions for \((c_1,\gamma _1)\), explicitly when either \(\alpha _1=\alpha \) or \(b_1=b\) (or both), and implicitly when neither of these holds. One of the conditions necessarily holds because, subject to the constraints on \((\alpha _1, b_1)\), the argument used to explore the possibilities in the parameter space for \((c_1,\gamma _1)\) is logically exhaustive.

When \(\alpha _1=\alpha \), (20) gives \(k(0+)=c_1/c >0\) and for \((*)\) to hold we must have \(c_1\le c\). Also from (20), \(k(b_1-) = 0\) for \(b_1<b\) and also for \(b_1=b\) and \(\gamma _1>\gamma \); for \(b_1=b\) and \(\gamma _1=\gamma \) we have \(k(t)=c_1/c\) identically. If \(b_1=b\) and \(\gamma _1 < \gamma \) then \(k(t)>1\) for \(1-t/b_1\) sufficiently small and positive so when \((*)\) holds, \(\alpha _1=\alpha \) and \(b_1=b\) implies both \(c_1\le c\) and \(\gamma _1\ge \gamma \). Conditions (A) are established.

In the rest of the proof we use the derivative \(k'(\cdot )\); observe that \(k(t)\) is differentiable with \(k'\) continuous and finite on \((0,b_1)\), and given by

$$\begin{aligned} k'(t)&= \bigg (\frac{c_1 t^{\Delta _\alpha -1} (1 - t/b_1)^{\gamma _1-1}}{c (1-t/b)^{\gamma +1}} \bigg ) \bigg [\Delta _\alpha \Big (1-\frac{t}{b}\Big )\Big (1-\frac{t}{b_1}\Big ) - \frac{\gamma _1 t}{b_1}\Big (1-\frac{t}{b}\Big ) + \frac{\gamma t}{b}\Big (1-\frac{t}{b_1}\Big )\bigg ] \\&= \Big (\cdots \Big )q_2(t)\big /b b_1 \end{aligned}$$
(21)

where \(q_2\) is as stated in the proposition.

This quadratic term \(q_2\) in (21) determines the sign and zeroes of \(k'(t)\) for \(0<t<b_1\). When \(\Delta _\alpha =0\), \(q_2(t) = t\,q_1(t)\) and the factor \(t\) eliminates \(t^{\Delta _\alpha }\) from \(\big (\cdots \big )\), leaving the linear factor \(q_1(t)\) to determine the sign and any zero of \(k'\) on \((0,b_1)\).

Because \(k(0+)>0=k(b_1-)\), if \(k'(0+) \le 0\) then \((*)\) holds; since \(k'(0+)=(c_1/c)(\gamma b_1-\gamma _1 b)\), Conditions (B) are established. If on the other hand \(k'(0+)>0\), hence \(\gamma > \gamma _1 b/b_1 \ge \gamma _1\), linearity of \(q_1(t)\) shows that \(k'(t)\) can have at most one zero on \((0,b_1)\), at \(t_0\) satisfying \(q_1(t_0)=0\), hence \(t_0 = (\gamma b_1 - \gamma _1 b)/(\gamma - \gamma _1)\); straightforward algebra checks that such \(t_0<b_1\) and, with more effort, that \(k(t_0)\le 1\) is equivalent to the rest of Conditions (C).

It remains to consider cases where \(\alpha _1>\alpha \). Since then \(k(0+)=0\), necessarily \(k'(0+)>0\) for \((*)\) to hold. Consider first \(b_1=b\) so that \(\gamma _1>\gamma \) (else \(k(t)>1\) for \(1-t/b_1\) sufficiently small positive). Either \(\gamma _1=\gamma \) and then from (2), \(k(b_1-) = \sup _{0<t\le b_1} k(t) = (c_1/c)b_1^{\Delta _\alpha }\) which establishes Conditions D; or \(k(b_1-)=k(0+)=0\) and we require \(k(t_0)\le 1\) where \(t=t_0 = \arg \sup _{0<t<b_1} k(t)\), so \(\Delta _\alpha (1-t_0/b_1) = \Delta _\gamma t_0/b_1\). Substitution in \(k(t_0)\le 1\) yields the rest of Conditions (E).

Now let \(\alpha _1>\alpha \) and \(b_1< b\). Since \(k(0+)=0= k(b_1-)\), \(q_2(0+)>0\) and \(q_2(b_1) = -\gamma b_1(b+b_1) < 0\) there is one zero \(t_0\) as stated in Conditions (F).

From our preliminary remarks to part (b) of the proof the Proposition is now established. \(\square \)

1.2 Appendix 2.2: Proof of Lemma 1

Proof

For any given \(t\), \({\mathbf{G}}(t)\) is positive definite if and only if for all real \(z\), \(g_{11}(t) + 2zg_{12}(t)+z^2g_{22}(t) \ge 0\). This inequality holds if and only if the discriminant of this quadratic form is not positive, i.e. \([2g_{12}(t)]^2 \le 4g_{11}(t)g_{22}(t)\), equivalently, much as in the proof of Proposition B in the Appendix,

$$\begin{aligned} k(t) := \frac{c_{12}^2 t^{2\alpha _{12}} (1-t/{b_{12}})_+^{2\gamma _{12}}}{c_{11}c_{22} t^{\alpha _{11}+\alpha _{22}} (1 - t/b_{11})_+^{\gamma _{11}} (1-t/b_{22})_+^{\gamma _{22}}}\le 1 \qquad (0 < t<b_{12}). \end{aligned}$$
(22)

Here, the support of the numerator cannot lie outside the support of the denominator; hence, Condition (1). The terms \(t^\alpha \) cancel by assumption on the \(\alpha _{ij}\)s, and then \(1\ge k(0+) = c_{12}^2/c_{11}c_{22}\), implying Condition (2).

For Condition (3), observe that \(k\) is continuous and has a continuous derivative \(k'\) on \((0,b_{12})\) where the sign and any zeroes of \(k'(\cdot )\) are in fact determined by the quadratic expression \(q(t) := -2\gamma _{12}(b_{11}-t)(b_{22}-t) + \gamma _{11}(b_{12}-t)(b_{22}-t) + \gamma _{22}(b_{11}-t)(b_{12}-t)\).

Since \(k(b_{12}^{}-)=0\), (22) holds when \(k'(0+)\le 0\), and \(k'(0+)\) has the same sign as \(q(0+)/(b_{11}b_{12}b_{22}) = Q\) as in the statement of the lemma. Otherwise, i.e. \(k'(0+)>0\), the continuity of \(k'\) and the fact that \(k(b_{12}^{}-)=0\) imply the existence of a root \(t_0\) in \((0,b_{12})\), and (22) holds when \(k(t_0)\le 1\); the quadratic nature of \(q\) and the properties of \(k\) as stated ensure the uniqueness of such a root \(t_0\). \(\square \)

Remark 1

(Case \(m=2\) but with different \(\alpha _{ij}\)) For \({\mathbf{G}}(t)\) to be positive definite the inequality at (22) must still hold, so as in the proof of the necessary conditions in Proposition B we must have \(2\alpha _{12} \ge \alpha _{11}+\alpha _{22}\). Suppose that strict inequality holds; then we are in the realm of Conditions (D)–(F) of Proposition B. Analogues of Conditions (D) and (E) are simpler to find, albeit detailed; we consider only an analogue of Condition (F).

Since \(k(0+) = 0 = k(b_{ij}^{}-)\) and \(k(t) > 0\) for \(0\,<\,t\,<\,b_{ij}\) where the derivative \(k'\) is continuous, differentiation shows that \(k'\) has the same sign and zeroes on \((0,b_{12})\) as

$$\begin{aligned} q(t) = \frac{2\alpha _{12}-\alpha _{11}-\alpha _{22}}{t} - \frac{2\gamma _{12}}{b_{12} - t} + \frac{\gamma _{11}}{b_{11}-t} + \frac{\gamma _{22}}{b_{22}-t}\,. \end{aligned}$$

The right-hand side has a unique zero in \((0,b_{12})\), at \(t_0\) say. Then \({\mathbf{G}}(t)\) is positive definite for all \(t\in (0,b_{12})\) under the inequality condition on the \(\alpha _{ij}\)s provided \(k(t_0) \le 1\).

1.3 Appendix 2.3: Proof of Lemma 2

Proof

For (8) to hold, the support set \((0,\max _{j\ne i} b_{ij})\) of the right-hand side must be contained by the support set \((0,b_{ii})\) of the left-hand side, i.e. \(b_{ii} \ge \max _{j\ne i} b_{ij}\). Further, the inequality (8) is certainly satisfied when

$$\begin{aligned} c_{ii} \ge \sum _{j\ne i} c_{ij} \sup _{0<t<b_{ij}} \frac{t^{\alpha _{ij}-\alpha _{ii}} (1-t/b_{ij})_+^{\gamma _{ij}}}{(1 - t/b_{ii})_+^{\gamma _{ii}}} \,=:\, \sum _{j\ne i} c_{ij} \sup _{0\,<\,t\,<\,b_{ij}} h_{ij}(t) \qquad \hbox {say}. \end{aligned}$$
(23)

when \(\alpha _{ij}=\alpha _{ii}\) for all \(j\), \(h_{ij}(\cdot )\) simplifies and the supremum of \(h_{ij}\) on \((0,b_{ij})\) is found much as in the argument establishing Conditions (B) and (C) of Proposition B: \(\sup _{0<t<b_{ij}} h_{ij}(t) = h_{ij}(0+) = 1\) when \(h'_{ij}(0+)\le 0\), i.e. when either \(\gamma _{ii}=0\) or \(\gamma _{ij}/\gamma _{ii} \ge b_{ij}/b_{ii}\). Otherwise we find \(\sup _{t\in (0,b_{ij})} h_{ij}(t) = h_{ij}(t_{ij})\) via the unique root \(t_{ij}\) in \((0,b_{ij})\) of \(h'_{ij}(t_{ij})=0\). Combine these facts to obtain the last term in the inequality at Condition (2) of Lemma 2 where we have summarized this discussion. \(\square \)

Appendix 3: Multivariate Wendland functions: proof of Theorem 1

Proof

Inspection of Lemma 2 shows that when \({\mathbf{G}}(t)\) as defined satisfies Conditions (1) and (2) there, so too does \({\mathbf{G}}_k(t)\), which is thus diagonally dominant and hence positive definite. Then Theorem A shows that \({\varvec{\Psi}}\) as defined is a covariance matrix. It remains to establish (11).

The right-hand side of (11) in the case \(k=0\), with \(0<\xi =\Vert {\varvec{x}}\Vert <b_{ij}\), equals

$$ \int _{{\mathrm{I}}\!{\mathrm{R}}_+}\psi _\nu \Big (\frac{\xi }{t}\Big )\, g_{ij}(t; \nu ,\gamma _{ij},b_{ij},c_{ij})\,{\mathrm{d}}t= c_{ij}\int _{{\mathrm{I}}\!{\mathrm{R}}_+}\Big (1 - \frac{\xi }{t}\Big )_+^\nu \, t^\nu \Big (1 - \frac{t}{b_{ij}}\Big )_+^{\gamma _{ij}}\,{\mathrm{d}}t = \frac{c_{ij}}{b_{ij}^{\gamma _{ij}}} \int _\xi ^{b_{ij}} (t - \xi )^\nu (b_{ij}-t)^{\gamma _{ij}}\,{\mathrm{d}}t = \frac{c_{ij}}{b_{ij}^{\gamma _{ij}}} \int _0^{b_{ij}-\xi } u^\nu (b_{ij}-\xi -u)^{\gamma _{ij}}\,{\mathrm{d}}u = \frac{c_{ij}}{b_{ij}^{\gamma _{ij}}} \int _0^1 (b_{ij} - \xi )^{\nu +\gamma _{ij}+1} v^\nu (1-v)^{\gamma _{ij}}\,{\mathrm{d}}v = c_{ij}\,b_{ij}^{\nu +1}\Big (1 - \frac{\xi }{b_{ij}}\Big )^{\nu +\gamma _{ij}+1} \,B(\nu +1,\gamma _{ij}+1) = c_{ij}\,b_{ij}^{\nu +1} \,B(\nu +1,\gamma _{ij}+1) \,\psi _{\nu +\gamma _{ij}+1}\Big (\frac{\xi }{b_{ij}}\Big ) , $$

so (10) and (11) agree when \(k=0\).

To show that (10) and (11) agree for positive integers \(k\), we exploit the exposition in Sect. 2.1 from which we know (see (19)) that for \(0<w\le 1\),

$$\begin{aligned} {\widetilde{\psi }}_{\nu ,k}(w) = {\widetilde{I}}^k \psi _\nu (w) = I^k\psi _\nu (w)\big /I^k\psi _\nu (0) \,= \int _w^1 \frac{(1-u)^{\nu -1} (u^2-w^2)^k\,{\mathrm{d}}u}{B(\nu ,2k+1)}\,. \end{aligned}$$

In particular, for \(0<y<t\le 1\),

$$\begin{aligned} {\widetilde{I}}^k \psi _\nu \Big (\frac{y}{t}\Big )&= \frac{1}{B(\nu ,2k+1)} \int _{y/t}^1 (1 - u)^{\nu -1} \Big (u^2 - \frac{y^2}{t^2}\Big )^k\,{\mathrm{d}}u \\&= \frac{1}{B(\nu ,2k+1)} \int _y^t \Big (1 - \frac{v}{t}\Big )^{\nu -1} (v^2 - y^2)^k\,\frac{{\mathrm{d}}v}{t^{2k+1}}\,. \\ \end{aligned}$$

It follows from (10) that, for \(0 < \xi =\Vert {\varvec{x}}\Vert < b_{ij}\) as for \(k=0\),

$$\Psi _{ij}({\varvec{x}})= c_{ij}\int _\xi ^{b_{ij}} {\widetilde{I}}^k\psi _\nu \left(\frac{\xi }{t}\right) \,t^{\nu +2k}\,\left(1 - \frac{t}{b_{ij}}\right)^{\gamma _{ij}}\,{\mathrm{d}}t = \frac{c_{ij}}{B(\nu ,2k+1)} \int _\xi ^{b_{ij}} \,t^{\nu +2k}\,\left(1 - \frac{t}{b_{ij}}\right)^{\gamma _{ij}}\,{\mathrm{d}}t \int _\xi ^t \left(1 - \frac{v}{t}\right)^{\nu -1} (v^2 - \xi ^2)^k\,\frac{{\mathrm{d}}v}{t^{2k+1}}\,=\,\frac{c_{ij}\,b_{ij}^{-\gamma _{ij}}}{B(\nu ,2k+1)} \int _\xi ^{b_{ij}} (v^2-\xi ^2)^k\,{\mathrm{d}}v \int _v^{b_{ij}} (b_{ij}-t)^{\gamma _{ij}} (t-v)^{\nu -1}\,{\mathrm{d}}t = \frac{c_{ij}\,b_{ij}^{-\gamma _{ij}}}{B(\nu ,2k+1)} B(\nu ,\gamma _{ij}+1) \int _\xi ^{b_{ij}} (b_{ij}-v)^{\nu +\gamma _{ij}} (v^2-\xi ^2)^k\,{\mathrm{d}}v = c_{ij}\,b_{ij}^{\nu +2k+1} \frac{B(\nu ,\gamma _{ij}+1)}{B(\nu ,2k+1)} \int _{\xi /b_{ij}}^1 (1-u)^{\nu +\gamma _{ij}} \left(u^2-\frac{\xi ^2}{b_{ij}^2}\right)^k\,{\mathrm{d}}u = c_{ij}\,b_{ij}^{\nu +2k+1} \frac{B(\nu ,\gamma _{ij}+1)}{B(\nu ,2k+1)}\, B(\nu +\gamma _{ij}+1,2k+1)\, {\widetilde{I}}^k \psi _{\nu +\gamma _{ij}+1}\left(\frac{\Vert {\varvec{x}}\Vert }{b_{ij}}\right) = c_{ij}\,b_{ij}^{\nu +2k+1}\, B(\nu +2k+1,\gamma _{ij}+1)\, {\widetilde{\psi }}_{\nu +\gamma _{ij}+1, k}\left(\frac{\Vert {\varvec{x}}\Vert }{b_{ij}}\right),$$

so (10) and (11) agree as asserted. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daley, D.J., Porcu, E. & Bevilacqua, M. Classes of compactly supported covariance functions for multivariate random fields. Stoch Environ Res Risk Assess 29, 1249–1263 (2015). https://doi.org/10.1007/s00477-014-0996-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0996-y

Keywords

Mathematics Subject Classification

Navigation