Skip to main content
Log in

Radial basis functions with compact support for multivariate geostatistics

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Matrix-valued radially symmetric covariance functions (also called radial basis functions in the numerical analysis literature) are crucial for the analysis, inference and prediction of Gaussian vector-valued random fields. This paper provides different methodologies for the construction of matrix-valued mappings that are positive definite and compactly supported over the sphere of a d-dimensional space, of a given radius. In particular, we offer a representation based on scaled mixtures of Askey functions; we also suggest a method of construction based on B-splines. Finally, we show that the very appealing convolution arguments are indeed effective when working in one dimension, prohibitive in two and feasible, but substantially useless, when working in three dimensions. We exhibit the statistical performance of the proposed models through simulation study and then discuss the computational gains that come from our constructions when the parameters are estimated via maximum likelihood. We finally apply our constructions to a North American Pacific Northwest temperatures dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions, applied mathematical series 55. National Bureau of Standards, Washington. (reprinted 1968 by Dover Publications, New York.)

  • Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97:15–30

    Article  Google Scholar 

  • Askey R (1973) Radial characteristic functions, technical report no. 1262. Mathematical Research Center, University of Wisconsin-Madison, Madison (1973)

  • Banerjee S, Gelfand AE (2003) On smoothness properties of spatial processes. J Multivar Anal 84:85–100

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall, Boca Raton

  • Beatson RK, zu Castell W, Schroedl S (2009) Kernel based methods for vector-valued data with correlated components. Preprint. Helmholtz-Zentrum, München

  • Benbourhim M, Bouhamidi A (2005) Approximation of vector fields by thin plate splines with tension. J Approx Theor 136:198–229

    Article  Google Scholar 

  • Berrocal VJ, Raftery AE, Gneiting T (2008) Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann Appl Stat 2:1170–1193

    Article  Google Scholar 

  • de Boor C (1978) A practical guide to splines. Springer, New York

  • Buhmann M (2001) A new class of radial basis functions with compact support. Math Comput 70:307–318

    Google Scholar 

  • Chilés J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

  • Christakos G, Hristopoulos D (1998) Spatiotemporal environmental health modeling: a tractatus stochasticus. Kluwer, Boston

  • Cramér H (1940) On the theory of stationary random functions. Ann Math 41:215–230

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data, revised edition. Wiley, New York

  • Du J, Zhang H, Mandrekar V (2009) Infill asymptotic properties of tapered maximum likelihood estimators. Ann Stat Bull Metrop Insur Co 37:3330–3361

    Article  Google Scholar 

  • Eckel AF, Mass CF (2005) Aspects of effective mesoscale short-range ensemble forecasting. Weather Forecast 20:328–350

    Article  Google Scholar 

  • Furrer R, Genton M, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15:502–523

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteor Soc 125:723–757

    Article  Google Scholar 

  • Gneiting T (2001) Criteria of pólya type for radial positive definite functions. Proc Am Math Soc 129:2309–2318

    Article  Google Scholar 

  • Gneiting T (2002a) Nonseparable, stationary covariance functions for space–time data. J Am Stat Assoc 97:590–600

    Article  Google Scholar 

  • Gneiting T (2002b) Compactly supported correlation functions. J Multivar Anal 83:493–508

    Article  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167–1177

    Article  CAS  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24:269–282

    Article  Google Scholar 

  • Horn R.A., Johnson C.H. (1986) Matrix Analysis. Cambridge: Cambridge University Press

  • Hristopoulos D, Porcu E (2012) Spartan vector-valued random fields. Submitted

  • Kaufman C, Schervish M, Nychka D (2008) Covariance tapering for likelihood-based estimation in large spatial datasets. J Am Stat Assoc 103:1545–1555

    Article  CAS  Google Scholar 

  • Li B, Genton MG, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95:813–829

    Article  Google Scholar 

  • Majumdar A, Gelfand AE (2007) Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math Geol 39:225–245

    Article  CAS  Google Scholar 

  • Matérn B (1986) Spatial variation, 2nd edn. Springer, Berlin

  • Matheron G (1962) Traité de Géostatistique appliquée, tome 1 (1962), tome 2 (1963). Editions Technip, Paris

  • Misiewicz J (1989) Positive definite functions on \(l_{\infty}. \) Statist Probab Lett 8:255–260

    Article  Google Scholar 

  • Narcowich FJ, Ward JD, Wright GB (2007) Divergence-free RBFs on surfaces. J Fourier Anal Appl 13:643–663

    Article  Google Scholar 

  • Powell MJD (1981) Approximation theory and methods. Cambridge University Press, Cambridge

  • Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stoch Environ Res Risk Assess 21:113–122

    Article  Google Scholar 

  • Porcu E, Zastavnyi V (2011) Characterization theorems for some classes of covariance functions associated to vector valued random fields. J Multiv Anal 102(9):1293–1301

    Article  Google Scholar 

  • Schaback R (2011) The missing Wendland functions. Adv Comput Math 34(1):67–81

    Article  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math Ann 39:811–841

    Google Scholar 

  • Schlather M (2010) Some covariance models based on normal scale mixtures. Bernoulli 16:780–797

    Article  Google Scholar 

  • Schmidt AM, Gelfand AE (2003) A Bayesian coregionalization approach for multivariate pollutant data. J Geophys Res Atmos 108: D24 (article no. 8783)

  • Stein ML (1999) Interpolation of spatial data. Springer, New York

  • Ver Hoef JM, Barry RP (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inf 69:275–294

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics, 3rd edn. Springer, Berlin

  • Wendland H (1994) Ein Beitrag zur Interpolation mit radialen Basisfunktionen. Diplomarbeit, Göttingen

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

  • Whittaker ET, Watson GN (1927) A course of modern analysis, 4th edn. Cambridge University Press, Cambridge

  • Williamson RE (1956) Multiply monotone functions and their Laplace transforms. Duke Math J 23:189–207

    Google Scholar 

  • Zastavnyi VP (2004) On properties of the Buhmann function. Ukrainian Math J 58:1184–1208

    Article  Google Scholar 

  • Zastavnyi VP (2008) Problems related to positive definite functions. In: Mateu J, Porcu E (eds) Positive definite functions: from Schoenberg to space–time challenges. Editorial Universitat Jaume I, Barcelona, p 63–114

Download references

Acknowledgements

D.J. Daley’s work was done partly as an Honorary Professorial Associate in the School of Mathematics and Statistics at the University of Melbourne, and partly while visiting the University of Göttingen. Support both in kind and towards living away from home is gratefully acknowledged. The authors thank Professor Victor Léiva for useful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Porcu.

Appendix

Appendix

Some proofs

Proof of Theorem 1.

Direct inspection shows that

$$ \psi_{\nu+\mu}(t) := \frac{\Upgamma(1+\nu+\mu)} {\Upgamma(\nu) \Upgamma(1+\mu)} \int\limits_0^1 \psi_{\nu-1,0,\beta}(t) g(\beta;\mu) \mathrm{d}\beta, \quad t \in [0,\infty), $$
(15)

for \(\psi_{\nu-1,0,\beta}(\cdot)\in\Upphi(\mathbb{R}^d),\; \nu\ge\frac{1}{2} d+2\) and \(\beta\mapsto g(\beta;\mu) := \beta^\nu(1-\beta)_+^\mu,\quad \mu\ge 0. \) This is evidently of the form in Eq. (8), being a special case of Theorem A, so that we only need to show that the matrix-valued mapping

$$ g(\beta; {\mu}):= \big[g(\beta;\mu_{ij})\big]_{i,j=1}^m $$

belongs to the class \(\Upphi^m\) for all \(0\le \beta \le 1\) and \({\mu} \in \mathbb{R}_+^{{\text {m}}({\text {m}}+1)/2}. \) To do this we appeal to the stronger statement of diagonal dominance and nonnegativity of the elements on the diagonal, which follows from noting that

$$ c_{ii} g(\beta;\mu_{ii}) \ge \sum_{j\ne i}|c_{ij}| g(\beta;\mu_{ii}) \ge \sum_{j\ne i} |c_{ij}| g(\beta; \mu_{ij}). $$

Because positive definiteness is preserved under scale mixtures and under Schur products with the positive-definite matrix \(\mathbf{c}\) of coefficients \(c_{ij}\) used in Eq. (9), the proof is complete.

Proof of Proposition 3.

The proof is again constructive. The structure in Eq. (11) is obtained through the Schur product of the matrix based on (9), namely

$$ \left( {\begin{array}{ll} {\sigma _{1}^{2} \frac{{\Gamma (2 + \nu + \mu _{{11}} )}}{{\Gamma (1 + \nu ){\text{ }}\Gamma (1 + \mu _{{11}} )}}} & {\rho _{{12}} \sigma _{1} \sigma _{2} \frac{{\Gamma (2 + \nu + \mu _{{12}} )}}{{\Gamma (1 + \nu ){\text{ }}\Gamma (1 + \mu _{{12}} )}}} \\ {\rho _{{12}} \sigma _{1} \sigma _{2} \frac{{\Gamma (2 + \nu + \mu _{{12}} )}}{{\Gamma (1 + \nu ){\text{ }}\Gamma (1 + \mu _{{12}} )}}} & {\sigma _{2}^{2} \frac{{\Gamma (2 + \nu + \mu _{{22}} )}}{{\Gamma (1 + \nu ){\text{ }}\Gamma (1 + \mu _{{22}} )}}} \\ \end{array} } \right), $$

with the matrix \(\mathbf{C}(\cdot)\) defined in Eq. (9) for m = 2, so that we only need to verify that the matrix above is positive definite; this is indeed the case when the condition in Eq. (12) holds. The condition \(\mu_{12} \le {\textstyle\frac{1}{2}}(\mu_{11}+\mu_{22})\) comes from the matrix \(\mathbf{C} (\cdot)\) in Eq. (11) for the case m = 2 via a determinantal inequality.

Proof of Proposition 5.

We detail some algebra involving the convolution \((\psi_{{\nu}}* \psi_{{\mu}})(t),\quad t\in{\mathbb{R}}, \) of the basic Askey functions \(\psi_{{\nu}}(t):= (1 - |t|)_+^\nu\) under the restriction \(\nu, \mu \in \mathbb N, \) namely

$$ (\psi_{{\nu}}* \psi_{{\mu}})(t):= \int\limits_{-1}^1 (1-|t-u|)_+^\nu (1-|u|)_+^\mu \mathrm{d} u. $$
(16)

As written in (16) the functions are defined on the interval [−1, 1] in \({\mathbb{R}}^1; \) the essential features are that they are nonnegative, are positive definite for \(\nu,\mu\) greater or equal than two, and have compact support. The convolution at (16) also has compact support, albeit on [−2, 2].

We evaluate (16) for positive integers \(\nu\) and \(\mu. \) Observe that the function on the left-hand side is symmetric about the origin so that it is a function of \(|t|. \) Indeed, inspection of the right-hand side shows that the first factor of the integrand is exactly \((1-t+u)_+^\nu \)for \(1<t<2, \)and in this range it is nonzero only for \(t-1<u<1. \) So for such t (and, indeed, for \(|t| = t\)) the integral equals

$$ \begin{aligned} \int\limits_{{t - 1}}^{1} {(1 - t + u)^{\nu } } (1 - u)^{\mu } {\text{d}}u =& \int\limits_{0}^{{2 - t}} {v^{\nu } } (2 - t - v)^{\mu } {\text{d}}v \\ = &\int\limits_{0}^{{2 - t}} {\frac{\nu }{{\mu + 1}}} v^{{\nu - 1}} (2 - t - v)^{{\mu + 1}} {\text{d}}v \\ =& \int\limits_{0}^{{2 - t}} {\frac{{\nu !\mu !}}{{(\mu + \nu )!}}} (2 - t - v)^{{\mu + \nu }} {\text{d}}v \\ =& \frac{{\nu !\mu !}}{{(\nu + \mu + 1)!}}(2 - t)^{{\nu + \mu + 1}} . \\ \end{aligned} $$
(17)

For \(0<t<1, \) the set of values of u making positive contributions to the convolution expands to \(-(1-t) < u < 1, \) while

$$ (1 - |t - u|)_{ + } = \left\{{\begin{array}{ll}{1 - t + u} \hfill & {{\text{for}}\; - (1 - t) < u < 0,} \hfill \\ {1 - t + u} \hfill & {{\text{for}}\;0 < u < t,} \hfill \\ {1 + t - u} \hfill & {{\text{for}}\;t < u < 1.} \hfill \\ \end{array} } \right.$$

Writing the convolution integral at (16) for this range of u as \(\int_{-(1-t)}^1 \cdots = \big(\int_{-(1-t)}^0 + \int_0^t + \int_t^1\big)\cdots, \) we evaluate each of these contributions as below:

$$ \begin{aligned} & \int\limits_{t}^{1} {(1 + t - u)^{\nu } } (1 - u)^{\mu } {\text{d}}u \\ & \quad = \left. {\frac{{ - (1 + t - u)^{\nu } (1 - u)^{{\mu + 1}} }}{{\mu + 1}}} \right|_{t}^{1} - \int\limits_{t}^{1} {\frac{{\nu (1 + t - u)^{{\nu - 1}} (1 - u)^{{\mu + 1}} }}{{\mu + 1}}} {\text{d}}u \\ & \quad = \frac{{(1 - t)^{{\mu + 1}} }}{{\mu + 1}} - \frac{{\nu (1 - t)^{{\mu + 2}} }}{{(\mu + 1)(\mu + 2)}} + \int\limits_{t}^{1} {\frac{{\nu (\nu - 1)(1 + t - u)^{{\nu - 2}} (1 - u)^{{\mu + 2}} }}{{(\mu + 1)(\mu + 2)}}} {\text{d}}v \\ & \quad = \sum\limits_{{j = 0}}^{{\nu - 1}} {\frac{{\nu !\mu !( - 1)^{j} (1 - t)^{{\mu + 1 + j}} }}{{(\nu - j)!(\mu + 1 + j)!}}} + ( - 1)^{\nu } \int\limits_{t}^{1} {\frac{{\nu !\mu !}}{{(\mu + \nu )!}}} (1 - u)^{{\mu + \nu }} {\text{d}}v \\ & \quad = \sum\limits_{{j = 0}}^{\nu } {\frac{{\nu !\mu !( - 1)^{j} (1 - t)^{{\mu + 1 + j}} }}{{(\nu - j)!(\mu + 1 + j)!}}} ; \\ \end{aligned} $$
(18)
$$ \begin{aligned} & \int\limits_0^t (1-t+u)^\nu (1-u)^\mu \mathrm{d} u \\ & \quad= \frac{-(1-t+u)^\nu (1-u)^{\mu+1}}{\mu+1} \biggm|_0^t + \int\limits_0^t \frac{\nu(1-t+u)^{\nu-1}(1-u)^{\mu+1}}{\mu+1} \mathrm{d} u \\ & \quad = \sum_{j=0}^\nu \frac{\nu! \mu! [(1-t)^{\nu-j} - (1-t)^{\mu+1+j}]} {(\nu-j)! (\mu+1+j)!} ; \end{aligned} $$
(19)
$$ \begin{aligned} \int\limits_{-(1-t)}^0 (1-t+u)^\nu (1+u)^\mu \mathrm{d} u =& \frac{(1-t+u)^\nu (1+u)^{\mu+1}}{\mu+1}\biggm|_{-(1-t)}^0 - \int\limits_{-(1-t)}^0 \frac{\nu(1-t+u)^{\nu-1} (1+u)^{\mu+1}}{\mu+1} \mathrm{d} u \\ =& \sum_{j=0}^{\nu-1} \frac{\nu! \mu! (-1)^j (1-t)^{\nu-j}}{(\nu-j)! (\mu+1+j)!} + (-1)^\nu \frac{\nu! \mu!}{(\mu+\nu)!} \int\limits_{-(1-t)}^0 (1+u)^{\mu+\nu} \mathrm{d} u \\ =& \sum_{j=0}^\nu \frac{\nu! \mu! (-1)^j (1-t)^{\nu-j}}{(\nu-j)! (\mu+1+j)!} + (-1)^{\nu+1} \frac{\nu! \mu! t^{\mu+\nu+1}}{(\mu+\nu+1)!} . \\ \end{aligned} $$
(20)

Putting together (18)–(20) gives for this integration, when \(0<t<1, \)

$$ 2\nu !\mu !\left( {\sum\limits_{{j = 0}}^{{\left[ {\frac{1}{2}\nu } \right]}} {\frac{{(1 - t)^{{\nu - 2j}} }}{{(\nu - 2j)!(\mu + 1 + 2j)!}}} - \sum\limits_{{j = 0}}^{{\left[ {\frac{1}{2}(\nu - 1)} \right]}} {\frac{{(1 - t)^{{\mu + 2 + 2j}} }}{{(\nu - 1 - 2j)!(\mu + 2 + 2j)!}}} + \frac{{\frac{1}{2}( - 1)^{{\nu + 1}} t^{{\mu + \nu + 1}} }}{{(\mu + \nu + 1)!}}} \right). $$

Finally then, \((\psi_{{\nu}}*\psi_{{\mu}})(t)\) is zero except when \(|t|<2\) where it is as given at (13) and (14) of Proposition 5 for \(\nu_i=\nu, \nu_j=\mu\) and \(|t|=|x|. \)

Derivation of convolution formulae in \(\mathbb{R}^3. \)

The argument sketched below follows the lines of Theorem 3.c.1 in Gaspari and Cohn (1999), and shows that the convolution \((C_i *C_j)(z)\) of two radial functions compactly supported in the unit ball of \(\mathbb{R}^3, \) when their centres are distance z apart, is expressible

$$ z: = x \mapsto C_{{ij}} (z) = \left\{ {\begin{array}{ll} {\frac{{2\pi }}{z}\int_{0}^{1} r C_{i} (r)\int_{{|r - z|}}^{{r + z}} s C_{j} (s){\text{d}}s{\text{d}}r,} \hfill & {z > 0,} \hfill \\ {\int_{0}^{1} {C_{i} } (r)C_{j} (r)4\pi r^{2} {\text{d}}r,} \hfill & {z = 0.} \hfill \\ \end{array} } \right. $$
(21)

Appealing to the formula at (21), we calculate the convolution \((\psi_{{\nu}}* \psi_{{\mu}})(z)\) of two Wendland–Gneiting functions as

$$ \frac{2\pi}{z}\int\limits_0^{1} r (1-r)_+^{\nu} \int\limits_{|r-z|}^{r+z} s (1-s)_+^{\mu} \mathrm{d} s \mathrm{d} r. $$
(22)

The inner integrand at (22) equals

$$ \int\limits_{\max(r-z,z-r)}^{\min(r+z,1)} s(1-s)^\mu \mathrm{d} s, $$

where the upper limit replaces the truncation in the integrand. For the case \(r>z\) this equals

$$ \int\limits_{{r - z}}^{{\min (1,r + z)}} s (1 - s)^{\mu } {\text{d}}s = \left. {\left( {\frac{{ - s(1 - s)^{{\mu + 1}} }}{{\mu + 1}} - \frac{{(1 - s)^{{\mu + 2}} }}{{(\mu + 1)(\mu + 2)}}} \right)} \right|_{{r - z}}^{{\min (1,r + z)}} $$

after integration by parts, and depending on \(r+z>\) or \(\le 1, \) this equals

$$ \begin{array}{ll} \begin{gathered} \frac{{(r - z)(1 - r + z)^{{\mu + 1}} }}{{\mu + 1}} + \frac{{(1 - r + z)^{{\mu + 2}} }}{{(\mu + 1)(\mu + 2)}}, \hfill \\ \frac{{ - (r + z)(1 - r - z)^{{\mu + 1}} + (r - z)(1 - r + z)^{{\mu + 1}} }}{{\mu + 1}} \hfill \\ \end{gathered} & {{\text{if }}r + z > 1,} \\ \quad { + \frac{{ - (1 - r - z)^{{\mu + 2}} + (1 - r + z)^{{\mu + 2}} }}{{(\mu + 1)(\mu + 2)}},} & {{\text{if }}r + z \le 1.} \\ \end{array} $$

The case \(z>r\) equals

$$ \begin{aligned} & \int\limits_{z-r}^{\min(1,r+z)} s(1-s)^\mu \mathrm{d} s\\ & \quad = \bigg(\frac{-s(1-s)^{\mu+1}}{\mu+1} - \frac{(1-s)^{\mu+2}}{(\mu+1)(\mu+2)} \bigg)\bigg|_{z-r}^{\min(1,r+z)} , \\ &\quad = \frac{(z-r)(1-z+r)^{\mu+1}} {\mu+1} + \frac{(1-z+r)^{\mu+2}} {(\mu+1)(\mu+2)}, \quad\hbox{if }r+z > 1, \\ & \quad= \frac{-(r+z)(1-r-z)^{\mu+1} + (z-r)(1-z+r)^{\mu+1} }{\mu+1} \\ & \quad\quad+ \frac{-(1-r-z)^{\mu+2} + (1-z+r)^{\mu+2} } {(\mu+1)(\mu+2)}, \quad\hbox{if }r+z\le 1. \end{aligned} $$

Here the case that \(r+z>1\) can be given as the single expression

$$ \frac{(1 - |z-r|)^{\mu+2}}{(\mu+1)(\mu+2)} + \frac{|z-r|(1 - |z-r|)^{\mu+1}}{\mu+1}; $$

the case \(r+z\le 1\) also gives a single expression in terms of \(|z-r|. \)

To evaluate the expression at (22) write \(\int_0^1 (\cdots) \mathrm{d} r = \Big(\int_0^{1-z} + \int_{1-z}^1 \Big) (\cdots) \mathrm{d} r. \) This gives two integrals

$$ J_1:\,= \int\limits_{1-z}^1 r(1-r)^\nu \bigg[ \frac{(1 - |z-r|)^{\mu+2}} {(\mu+1)(\mu+2)} + \frac{|z-r|(1 - |z-r|)^{\mu+1}} {\mu+1}\bigg] \mathrm{d} r $$

and

$$ \begin{aligned} J_2 & := \int\limits_0^{1-z} r(1-r)^\nu \bigg[ \frac{|z-r|(1 - |z-r|)^{\mu+1} - (r+z)(1 - r - z)^{\mu+1}}{\mu+1} \\ & \quad +\frac{(1 - |z-r|)^{\mu+2} - (1-r-z)^{\mu+2}}{(\mu+1)(\mu+2)} \bigg] \mathrm{d} r. \\ \end{aligned} $$

To evaluate J 1 we must distinguish the two cases according as \(1-z>\)or\(< z, \) i.e. according as \(z<\frac{1}{2}\) or \(z>\frac{1}{2}. \) For the simpler case \(z<\frac{1}{2}, \)

$$ J_1 = \int\limits_{1-z}^1 \frac{r(1-r)^\nu}{\mu+1} \bigg[\frac{(1-r+z)^{\mu+2}}{\mu+2} + (r-z)(1 - r + z)^{\mu+1}\bigg] \mathrm{d} r, $$

while for the case \(z>\frac{1}{2}\) we use \(\int_{1-z}^1 = \int_{1-z}^z + \int_z^1\) and find

$$ \begin{aligned} J_1 =& \int\limits_{1-z}^z \frac{r(1-r)^\nu}{\mu+1} \bigg[\frac{(1-z+r)^{\mu+2}}{\mu+2} + (z-r)(1-z+r)^{\mu+1}\bigg] \mathrm{d} r \cr & {}+ \int\limits_z^1 \frac{r(1-r)^\nu}{\mu+1} \bigg[\frac{(1-r+z)^{\mu+2}}{\mu+2} + (r-z)(1-r+z)^{\mu+1}\bigg] \mathrm{d} r \\ :=\, & J_{11} + J_{12} . \end{aligned} $$

The rest of the formula is then deduced through simple, albeit tedious, algebra. Table 2 shows some special cases of the formulae above, obtained for \(\mu\) and \(\nu\) positive integers.

Table 2 A detailed calculation of the convolution formulae in \({\mathbb{R}^3}\) for special values of the parameters \(\mu\) and \(\nu\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcu, E., Daley, D.J., Buhmann, M. et al. Radial basis functions with compact support for multivariate geostatistics. Stoch Environ Res Risk Assess 27, 909–922 (2013). https://doi.org/10.1007/s00477-012-0656-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0656-z

Keywords

Navigation