Skip to main content
Log in

Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper describes an innovative procedure that is able to simultaneously identify the release history and the source location of a pollutant injection in a groundwater aquifer (simultaneous release function and source location identification, SRSI). The methodology follows a geostatistical approach: it develops starting from a data set and a reliable numerical flow and transport model of the aquifer. Observations can be concentration data detected at a given time in multiple locations or a time series of concentration measurements collected at multiple locations. The methodology requires a preliminary delineation of a probably source area and results in the identification of both the sub-area where the pollutant injection has most likely originated, and in the contaminant release history. Some weak hypotheses have to be defined about the statistical structure of the unknown release function such as the probability density function and correlation structure. Three case studies are discussed concerning two-dimensional, confined aquifers with strongly non-uniform flow fields. A transfer function approach has been adopted for the numerical definition of the sensitivity matrix and the recent step input function procedure has been successfully applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C(x,t):

Concentration at point x and time t

t :

Time

τ:

Time

x :

Position in the domain

x 0 :

Source location

u :

Velocity tensor

D :

Dispersion tensor

∇:

Nabla operator

F(t):

Concentration of the water injected at the source as function of time t

F 0 :

Constant and known mass rate input function

f(x,t):

Transfer function at position x and time t

m :

Number of observations

n :

Number of unknowns

z :

m × 1 Observations

s :

n × 1 Unknowns

s(t):

Unknown release function

p :

Number of unknown coefficients

h(s) :

m × 1 Vector that describes the transport process

v :

m × 1 Measurement errors

R :

m × m Error covariance matrix

H :

m × n Sensitivity matrix

T :

Sampling time

X :

n × p Matrix, mean of the unknown process

b :

p × 1 Unknown coefficients

Q(θ) :

n × n Matrix, covariance of the unknown process

θ :

Structural parameters of the covariance function

\( \sigma_{s}^{2} \) :

Variance of the unknown release function s(t)

λ s :

Correlation time length of the unknown release function s(t)

Σ :

m × m Dummy matrix

Ξ :

m × m Dummy matrix

σ 2R :

Variance of the measurement error

\( {\hat{\mathbf{s}}} \) n × 1:

Vector of estimated release function

M :

p × n Multipliers

Λ :

n × m Kriging coefficients

V :

n × n Matrix, covariance of the estimate of the errors

\( \tilde{s} \) :

Transformed unknown function

α :

Positive number

h D :

Head level downstream

h U :

Head level upstream

α L :

Longitudinal dispersivity

α T :

Transversal dispersivity

Q in :

Injected flow rate

K :

Hydraulic conductivity

Y :

Logarithm of the hydraulic conductivity

σ 2Y :

Variance of the log-conductivity field

Z :

Normalized log-conductivity

μY :

Mean of the log-conductivity field

References

  • Alapati S, Kabala ZJ (2000) Recovering the release history of a groundwater contaminant via the non linear least-squares estimation. Hydrol Process 14(6):1003–1016

    Article  Google Scholar 

  • Atmadja J, Bagtzoglou AC (2001) State of the art report on mathematical methods for groundwater pollution source identification. Environ Forensics 2(3):205–214

    Article  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:353–360

    Google Scholar 

  • Butera I, Tanda MG (2001) L’approccio geostatistico per la ricostruzione della storia di rilascio di inquinanti in falda. L’Acqua 4:27–36 (in Italian)

    Google Scholar 

  • Butera I, Tanda MG (2002), Ricostruzione della storia temporale del rilascio di un inquinante in falda mediante l’approccio geostatistico. In: Proceedings of “XXVIII Convegno di Idraulica e Costruzioni Idrauliche”, Potenza (I), 16–19 September 2002 (in Italian)

  • Butera I, Tanda MG (2003) A geostatistical approach to recover the release history of groundwater pollutants. Water Resour Res 39(12):1372. doi:10.1029/2003WR002314

    Article  Google Scholar 

  • Butera I, Tanda MG (2004) La ricostruzione della storia del rilascio di inquinanti negli acquiferi. Impiego di rilevazioni a tempi diversi e impatto dell’eterogeneità dell’acquifero. L’Acqua 3:27–36 (in Italian)

    Google Scholar 

  • Butera I, Tanda MG, Zanini A (2004) La ricostruzione della storia del rilascio di inquinanti in acquiferi sede di moto non uniforme mediante approccio geostatistico. In: Proceedings of “XXIX Convegno di Idraulica e Costruzioni Idrauliche”, Trento (I), 7–10 September 2004 (in Italian)

  • Butera I, Tanda MG, Zanini A (2006) Use of numerical modelling to identify the transfer function and application to the geostatistical procedure in the solution of inverse problems in groundwater. J Inv Ill-Posed Problems 14(6):547–572. doi:10.1163/156939406778474532

    Article  Google Scholar 

  • Dokou Z, Pinder GF (2009) Optimal search strategy for the definition of a DNAPL source. J Hydrol 376:542–556

    Google Scholar 

  • Fienen MN, Luo J, Kitanidis PK (2006) A Bayesian geostatistical transfer function approach to tracer test analysis. Water Resour Res 42:W07426. doi:10.1029/2005WR004576

    Article  Google Scholar 

  • Fienen MN, Hunt R, Krabbenhoft D, Clemo T (2009) Obtaining parsimonious hydraulic conductivity fields using head and transport observations: a Bayesian geostatistical parameter estimation approach. Water Resour Res 45:W08405. doi:10.1029/2008WR007431

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00-92, p 121

  • Jury WA, Roth K (1990) Transfer functions and solute movement through soil: theory and applications. Birkhauser, Boston

    Google Scholar 

  • Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419

    Article  Google Scholar 

  • Kitanidis PK (1996) On the geostatistical approach to the inverse problem. Adv Water Resour 19(6):333–342

    Article  Google Scholar 

  • Kitanidis PK, Shen KF (1996) Geostatistical estimation of chemical concentration. Adv Water Resour 19(6):369–378

    Article  Google Scholar 

  • Liu C, Ball WP (1999) Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware. Water Resour Res 35(7):1975–1985

    Article  CAS  Google Scholar 

  • Luo J, Cirpka OA, Fienen MN, Wu W, Mehlhorn TL, Carley J, Jardine PM, Criddle CS, Kitanidis PK (2006) A parametric transfer function concept for analyzing reactive transport in nonuniform flow. J Contam Hydrol 83(1–2):27–41

    Article  CAS  Google Scholar 

  • Michalak AM, Kitanidis PK (2002) Application of Bayesian inference methods to inverse modeling for contaminant source identification at Gloucester Landfill, Canada. In: Hassanizadeh SM, Schotting RJ, Gray WG, Pinder GF (eds) Computational methods in water resources XIV, vol 2. Elsevier, Amsterdam, pp 1259–1266

  • Michalak AM, Kitanidis PK (2003) A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification. Water Resour Res 39(2):SBH 7-1–SBH 7-14

  • Michalak AM, Kitanidis PK (2004a) Application of geostatistical inverse modelling to contaminant source identification at Dover AFB, Delaware. J Hydraul Res 42(extra issue):9–18

    Article  Google Scholar 

  • Michalak AM, Kitanidis PK (2004b) Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling. Water Resour Res 40:W08302

    Article  Google Scholar 

  • Michalak AM, Kitanidis PK (2004c) A method for the interpolation of nonnegative functions with an application to contaminant load estimation. Stoch Environ Res 18:1–16. doi:10.1007/s00477-004-0189-1

    Article  Google Scholar 

  • Milnes E, Perrochet P (2007) Simultaneous identification of a single pollution point-source location and contamination time under known flow field conditions. Adv Water Resour 30(12):2439–2446

    Article  Google Scholar 

  • Morrison RD (2000) Application of forensic techniques for age dating and source identification in environmental litigation. Environ Forensics 1(3):131–153

    Article  CAS  Google Scholar 

  • Neupauer RM, Wilson J (2001) Adjoint-derived location and travel time probabilities for a multi-dimensional groundwater system. Water Resour Res 36(6):1657–1668

    Google Scholar 

  • Neupauer RM, Borchers B, Wilson J (2000) Comparison of inverse methods for reconstructing the release history of a groundwater contamination source. Water Resour Res 36(9):2469–2475

    Article  CAS  Google Scholar 

  • Skaggs TH, Kabala ZJ (1994) Recovering the release history of a groundwater contaminant. Water Resour Res 30:71–79

    Article  Google Scholar 

  • Snodgrass MF, Kitanidis PK (1997) A geostatistical approach to contaminant source identification. Water Resour Res 33:537–546

    Article  CAS  Google Scholar 

  • Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 32:2671–2681

    Article  CAS  Google Scholar 

  • Woodbury AD, Ulrych TJ (1998) Reply to Comment on: minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 34(8):2081–2084

    Article  Google Scholar 

  • Zanini A, Kitanidis PK (2009) Geostatistical inversing for large-contrast transmissivity fields. Stoch Env Res Risk Assess 23:565–577. doi:10.1007/s00477-008-0241-7

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport models; documentation and user’s guide, contract report SERDP-99-1. U.S. Army Engineer Research and Development Center, Vicksburg

Download references

Acknowledgments

We warmly thank Michael Cardiff and Michael Fienen for their valuable review that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zanini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butera, I., Tanda, M.G. & Zanini, A. Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stoch Environ Res Risk Assess 27, 1269–1280 (2013). https://doi.org/10.1007/s00477-012-0662-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0662-1

Keywords

Navigation