Skip to main content

Sequential Characterization of Contaminant Plumes Using Feedback Information

  • Chapter
  • First Online:
The Ganga River Basin: A Hydrometeorological Approach

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

In many practical field problems, it may not be possible to identify the actual characteristics (location, magnitude and duration of contamination) of the groundwater contaminant sources in a contaminated aquifer. Also, most of the time, very sparse information regarding spatiotemporal contaminant concentration is available initially, which is inadequate for reliable identification and simulation of the contaminant plume. Simulation of the contaminant plume movement is necessary to predict the future distribution of the contaminant in the groundwater aquifer. Reliable simulation and prediction are also essential for developing an efficient contamination monitoring strategy. To address this practical problem of data inadequacy, an interactive methodology is proposed, incorporating the sequential design of optimal monitoring networks. These sequentially developed and implemented monitoring networks provide feedback information on measured concentrations. This measurement information helps in progressively improving the prediction of the contaminant plume, starting with very sparse initial information about the contaminant sources and spatial distribution of concentration. The proposed methodology is based on an optimization model that utilizes feedback information obtained from sequentially designed contaminant monitoring sites to sequentially characterize the contaminant plume when adequate initial concentration measurements are not available, and the contaminant sources are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benjema F, Mario MA, Loaiciga HA (1994) Multivariate geostatistical design of groundwater monitoring networks. Water Resour Plan Manage ASCE 120(4):505–522

    Google Scholar 

  • Chadalavada S, Datta B (2007) Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifers. Water Resour Manage 22:651–670

    Article  Google Scholar 

  • Cooper RM, Istok JD (1988) Geostatistics applied to groundwater contamination. III global estimates. J Environ Eng 114(2):287–299

    Article  CAS  Google Scholar 

  • Datta B, Dhiman SD (1996) Chance-constrained optimal monitoring network design for pollutants in ground water. J Water Resour Plan Manage ASCE 122(3):180–188

    Google Scholar 

  • Datta B, Brantigan J, Rosbjerg D, Nilsson B (2002) Hydrological information content and tracking of contaminant plume movement at an existing aquifer cleanup in Denmark. In: 4th international model care 2002 conference, Prague, Czech Republic, 17–20 June, 2002. IAHS Proceedings, vol 2, pp 377–381

    Google Scholar 

  • Deb K (2002) Optimization for engineering design, Prentice Hall of India. In: Delhi N

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. 2nd ed. Oxford University Press, New York

    Google Scholar 

  • Eggleston JR, Rojstaczer SA, Peirce JJ (1996) Identification of hydraulic conductivity structure in sand and gravel aquifer: Cape Cod data set. Water Resour Res 32(5):1209–1222

    Article  ADS  Google Scholar 

  • Fabbri P (1997) Transmissivity in the geothermal Euganean basin: a geostatistical analysis. Groundwater 35(5):881–887

    Article  CAS  Google Scholar 

  • Harbaugh AW, McDonald MG (1996) User’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-486, p 220

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Kuo CH, Michel AN, Gray WG (1992) Design of optimal pump-and-treat strategies for contaminated groundwater remediation using the simulated annealing algorithm. Adv Water Resour 15:95–105

    Google Scholar 

  • Lavenue AM, Pickens JF (1992) Application of a coupled adjoin sensitivity and kriging approach to calibrate a groundwater flow model. Water Resour Res 28(6):1543–1569

    Article  ADS  Google Scholar 

  • Lee YM, Ellis JH (1996) Comparison of algorithms for nonlinear integer optimization: application to monitoring network design. J Environ Eng ASCE 122(6):524–531

    Google Scholar 

  • Lin YP, Rouhani S (2001) Multiple-point variance analysis for optimal adjustment of a monitoring network. Environ Monit Assess 69(3):239–266

    Article  CAS  Google Scholar 

  • Lin YP, Tan YC, Rouhani S (2001) Identifying spatial characteristics of transmissivity using simulated annealing and Kriging methods. Environ Geol 41:200–208

    Article  ADS  Google Scholar 

  • Loaiciga HA (1989) An Optimization approach for groundwater quality monitoring network design. Water Resour Res 25(8):1771–1782

    Article  ADS  CAS  Google Scholar 

  • Loaiciga HA, Hudak PF (1992) A location modeling approach for groundwater monitoring network augmentation. Water Resour Res 28(3):643–649

    Article  ADS  Google Scholar 

  • Loaiciga HA, Hudak PF (1993) An optimization method for monitoring network design in multilayered groundwater flow systems. Water Resour Res 29(8):2835–2845

    Article  ADS  Google Scholar 

  • Loaiciga HA, Hudak PF, Marino MA (1995) Regional-scale ground water quality monitoring via integer programming. J Hydrol 164:153–170

    Article  Google Scholar 

  • McKinney DC, Loucks DP (1992) Network design for predicting groundwater contamination. Water Resour Res 28(1):133–147

    Google Scholar 

  • Meyer PD, Brill ED (1988) A method for locating wells in a groundwater monitoring network under conditions of uncertainty. Water Resour Res 24(8):1277–1282

    Article  ADS  Google Scholar 

  • Meyer PD, Valocchi AJ, Eheart JW (1994) Monitoring network design to provide initial detection of groundwater contamination. Water Resour Res 30(9):2647–2659

    Article  ADS  Google Scholar 

  • Passarella G, Vurro M, D’Agostino V, Barcelona MJ (2003) Co. kriging optimization of monitoring network configuration based on fuzzy and non-fuzzy variogram evaluation. Environ Monit Assess 82:1–21

    Article  CAS  Google Scholar 

  • Pinder GF, Bredehoeft JD (1968) Application of the digital computer for aquifer evaluations. Water Resour Res 4(5):1069–1093

    Google Scholar 

  • Prakash MR, Singh VS (2000) Network design for groundwater monitoring-a case study. Environ Geol 39(6):628–632

    Article  CAS  Google Scholar 

  • Rao SVN, Kumar S, Shekhar S, Chakraborty D (2006) Optimal pumping from skimming wells. J Hydrol Eng ASCE 11(5):464–471

    Google Scholar 

  • Reed PM, Minsker BS (2004) Striking the balance: long-term groundwater monitoring design for conflicting objective. J Water Resour Plan Manage ASCE 130(2):140–149

    Google Scholar 

  • Reed P, Minsker B, Valocchi AJ (2000) Cost-effective long term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resour Res 36(12):3731–3741

    Article  ADS  CAS  Google Scholar 

  • Rogers LL, Johnson VM, Knapp RB (1998) Remediation tradeoffs addressed with simulated annealing optimization. In: XII international conference on computational methods in water resources, the Chersonese, Crete, Greece, Report no. UCRL-JC-129850

    Google Scholar 

  • Rouhani S (1985) Variance reduction analysis. Water Resour Res 21(6):837–846

    Article  ADS  Google Scholar 

  • Rouhani S, Hall TJ (1988) Geostatistical schemes for groundwater sampling. J Hydrol 103:85–102

    Article  Google Scholar 

  • Singh D (2015) Groundwater monitoring network design: an optimal approach. Lambert Academic Publishing, Deutschland. ISBN 978-3-659-78092-9

    Google Scholar 

  • Singh D, Datta B (2014) Optimal groundwater monitoring network design for pollution plume estimation with active sources. Int J Geomate 6(2):864–869

    Google Scholar 

  • Singh D, Datta B (2016) Linked optimization model for groundwater monitoring network design. In: Urban hydrology, watershed management and socio-economic aspects. Springer International Publishing, pp 107–125. ISBN 978-3-319-40194-2

    Google Scholar 

  • Singh D, Singh RK (2013) Non-biodegradable contaminants transport modeling with varying transmissivity for aquifer at West Campus HBTI Kanpur. Int J Innov Res Sci Eng Technol 2(10):5731–5740

    Google Scholar 

  • Wang M, Zheng C (1998) Ground water management optimization using genetic algorithms and simulated annealing: formulation and comparison. J Am Water Resour Assoc 34(3):519–530

    Google Scholar 

  • Yeh MS, Lin YP, Chang LC (2006) Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. J Environ Geol 50:101–121

    Article  ADS  CAS  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide total 169 pages, Contract Report SERDP-99-1, US Army Engineer Research and Development Center, Vicksburg, Mississippi

    Google Scholar 

  • Zheng C, Wu J, Chien CC (2005) Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. J Contam Hydrol 77:41–65

    Google Scholar 

  • Zhu XY, Xu SH, Zhu JJ, Zhou NQ (1997) Study on the contamination of fracture-krastwater in Boshan District, China. Ground Water 35(3):538–545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepesh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Datta, B. (2021). Sequential Characterization of Contaminant Plumes Using Feedback Information. In: Chauhan, M.S., Ojha, C.S.P. (eds) The Ganga River Basin: A Hydrometeorological Approach. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-60869-9_2

Download citation

Publish with us

Policies and ethics