Skip to main content
Log in

Salt tolerance mechanisms in trees: research progress

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Our manuscript discussed salt tolerance mechanisms in trees, genes associated with salt stress tolerance, methods to improve the salt tolerance of trees, and research frontiers.

Abstract

Soil salinization is a global problem that seriously affects plant growth and development. Improving the salt tolerance of trees is an import economic and ecological aim in forestry. Recent studies have provided insight into resistance mechanisms in trees. Here, we present an overview of salt tolerance in trees and discuss mechanisms, genes associated and methods to improve the salt tolerance of trees, as well as research frontiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    CAS  Google Scholar 

  • Alvarez-Acosta C, Marrero-Dominguez A, Gallo-Llobet L, Gonzalez-Rodriguez AM (2018) Physiological response of selected avocados (Persea americana) subjected to NaCl and NaHCO3 stress. Sci Hortic 237:81–88. https://doi.org/10.1016/j.scienta.2018.04.010

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13(2):146–150

    CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50(1):601–639

    CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology advances 27(6):744–752

    CAS  PubMed  Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees 2(3):129–142

    Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254(1):3–16

    CAS  PubMed  Google Scholar 

  • Basyuni M, Ramayani, Hayullah A, Prayunita, Hamka M, Putri LA, Baba S (2019) Growth of salt-secretor and non-salt secretor mangrove seedlings with varying salinity and their relations to habitat zonation. In: IOP Conference Series Earth and Environmental, p 236 (in Chinese)

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Bio/Technol 11(1):55–69

    CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434

    CAS  PubMed  Google Scholar 

  • Borkar MU, Athalye RP, Goldin Q (2012) Salinity induced changes in the leaf anatomy of the mangrove Avicennia marina along the anthropogenically stressed tropical creek. J Coast Dev 14:191–201

    Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73(2):101–115

    CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–116

    CAS  Google Scholar 

  • Brinker M, Brosché M, Vinocur B, Abo-Ogiala A, Fayyaz P, Janz D, Ottow EA, Cullmann AD, Saborowski j, Kangasjärvi J, Altman A, Polle A (2010) Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiol 154(4):1697–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants-recent advances and future perspectives. InTech, London, pp 463–480

    Google Scholar 

  • Chang W, Sui X, Fan XX, Jia T, Song FQ (2018) Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front Microbiol 9:652. https://doi.org/10.3389/fmicb.2018.00652

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Li JK, Fritz E, Wang SS, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 168(1–3):217–230

    Google Scholar 

  • Chen SL, Li JK, Wang SS, Fritz E, Hüttermann A, Altman A (2003) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res 33(6):967–975

    CAS  Google Scholar 

  • Chen M, Song J, Wang BS (2010) NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus. Acta Physiol Plant 32(1):27–36

    Google Scholar 

  • Chen X, Chen JL, Zheng DJ, Yun Y (2017) Effects of temperature and NaCl stress on seed germination of Mulberry. Mod Agric Sci Technol 22:234–236 (in Chinese)

    Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139(2):137–145

    CAS  PubMed  Google Scholar 

  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49(2):107–120

    Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399. doi:https://doi.org/10.1007/s10725-015-0143-x

    Article  CAS  Google Scholar 

  • Downton WJS (1978) Growth and flowering in salt-stressed avocado trees. Aust J Agric Res 29(3):523–534. doi:https://doi.org/10.1071/ar9780523

    Article  CAS  Google Scholar 

  • Fang Q, Jiang TZ, Xu LX, Liu H, Mao H, Wang XQ, Jiao B, Duan YJ, Wang Q, Dong QN, Yang L, Tian GZ, Zhang C, Zhou YF, Liu XP, Wang HY, Fan D, Wang BJ, Luo KM (2017) A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis. Plant Physiol Biochem 114:100–110

    CAS  PubMed  Google Scholar 

  • Feng L (2011) Comparative study of salt resistance of Pistacia chinensis and Hovenia dulcis. J Northw For Univ 26(03):41–44 (in Chinese)

    Google Scholar 

  • Feng L, Bai ZY, Lu BS, Cai SW, Feng LN (2008) Effects of NaCl stress on Hovenia dulcis and Gleditsia sinensis seedlings growth, chlorophyll fluorescence, and active oxygen metabolism. Chin J Appl Ecol 19(11):2503–2508

    CAS  Google Scholar 

  • Feng ZT, Deng YQ, Fan H, Sun QJ, Sui N, Wang BS (2014) Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. Photosynthetica 52:313–320

    CAS  Google Scholar 

  • Feng ZT, Deng YQ, Zhang SC, Liang X, Yuan F, Hao JL, Zhang JC, Sun SF, Wang BS (2015) K+ accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Sci 238:286–296

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28(1):89–121

    CAS  Google Scholar 

  • Gandonou CH, Abrini J, Senhaji NS (2005) Response of sugarcane (Saccharum sp.) varieties to embryogenic callus induction and in vitro salt stress. Afr J Biotech 4(4):350–354

    CAS  Google Scholar 

  • Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R (2000) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. Mol Breeding 6(5):501–510

    CAS  Google Scholar 

  • Gao WD, Bai S, Li QM, Gao CQ, Liu GF, Li GD, Tan FL (2013) Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS One 8(6):e67462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong SF, Chen ST (2018) The change of osmoregulation substance content in different varieties of coconut at the nursery stage under salt stres. Chin J Trop Agric 38(06):1–5 (in Chinese)

    Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388(1):151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu RS, Fonseca S, Puskas LG, Hackler L, Zvara A, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24(3):265–276. https://doi.org/10.1093/treephys/24.3.265

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    CAS  PubMed  Google Scholar 

  • Han N, Shao Q, Bao HY, Wang BS (2011) Cloning and characterization of a Ca2+/H+ Antiporter from Halophyte Suaeda salsa L. Plant Mol Biol Rep 29:449–457. doi:https://doi.org/10.1007/s11105-010-0244-7

    Article  CAS  Google Scholar 

  • Han N, Lan WJ, He X, Shao Q, Wang BS, Zhao XJ (2012) Expression of a Suaeda salsa vacuolar H+ /Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Mol Biol Rep 30:470–477

    CAS  Google Scholar 

  • Han GL, Wang MJ, Yuan F, Sui N, Song J, Wang BS (2014) The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol Biol 86:237–253. https://doi.org/10.1007/s11103-014-0226-5

    Article  CAS  PubMed  Google Scholar 

  • Han GL, Yuan F, Guo JR, Zhang Y, Sui N, Wang BS (2019) AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Sci 285:55–67

    CAS  PubMed  Google Scholar 

  • Hanson AD, May AM, Grumet R, Bode J, Jamieson GC, Rhodes D (1985) Betaine synthesis in chenopods: localization in chloroplasts. Proc Natl Acad Sci 82(11):3678–3682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29(1):9–17

    CAS  PubMed  Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkol K, Charoensataporn R (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29(2):109–113

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • He CX, Yan JQ, Shen GX, Fu LH, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46(11):1848–1854

    CAS  PubMed  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    CAS  Google Scholar 

  • Hong PZ, Cao BH, Zhang XW, Zhao JC, Qin YJ (2010) The salt-tolerance of superior clones of Robinia pseudoacacia. For Ecol Sci 25(4):329–333 (in Chinese)

    Google Scholar 

  • Hong-Bo S, Zong-Suo L, Ming-An S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surfaces B Biointerfaces 45(3–4):131–135

    PubMed  Google Scholar 

  • Hoque MA, Okuma E, Banu MN Nakamura A, Shimoishi Y, Murata Y (2007) Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164(5):553–561

    CAS  PubMed  Google Scholar 

  • Hu L, Lu H, Liu QL, Chen XM, Jiang XN (2005) Overexpression of mtl D gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25(10):1273–1281

    CAS  PubMed  Google Scholar 

  • Huang JX (2013) Effect of soil salinity degrees on afforestation. Heilongjiang Sci Technol Inf 11:258 (in Chinese)

    Google Scholar 

  • Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127(4):1827–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G (2013) Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. J Plant Physiol 170(10):915–922

    CAS  PubMed  Google Scholar 

  • Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10(1):150

    PubMed  PubMed Central  Google Scholar 

  • Ji XY, Liu GF, Liu YJ, Zheng L, Nie XG, Wang YC (2013) The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biol 13(1):151

    PubMed  PubMed Central  Google Scholar 

  • Jiang CQ, Zheng QS, Liu ZP, Liu L, Zhao GM, Long XH, Li HY (2011) Seawater-irrigation effects on growth, ion concentration, and photosynthesis of transgenic poplar overexpressing the Na+/H+ antiporter AtNHX1. J Plant Nutr Soil Sci 174(2):301–310

    CAS  Google Scholar 

  • Jiao ZY, Wang BS, Shi SZ, Han JF, Wang YL, Zhang J, Sui DZ (2008) Advances in salt resistance of trees. J Northw For Univ 5:60-64 + 73

    Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17(4):651

    CAS  PubMed  Google Scholar 

  • Li HY (2018) A study on the mechanisms of molecular and physiologica metabolic response to salt stress in Nitraria sibirica Pall. Doctoral thesis. Chin Acad For (in Chinese)

  • Li J, Chen WY (1984) Screening of poplar salt-tolerant cell lines and research on adventitious shoot regeneration. For Sci Technol 1:1–3 (in Chinese)

    Google Scholar 

  • Li L, Han YF (1990) Screening of salt tolerant nutants in Poplar. Sci Silv Sin 04:359–362 (in Chinese)

    Google Scholar 

  • Li YL, Su XH, Zhang BY, Huang QJ, Zhang XH, Huang RF (2009) Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree physiology 29(2):273–279

    CAS  PubMed  Google Scholar 

  • Li HY, Lin SJ, Wang S, Liu FF, Jiang J (2010a) Sequence analysis and salt tolerance of rd22 gene from Tamarix androssowii. J Northw AF Univ Nat Sci Ed 38(6):95–101 (in Chinese)

    Google Scholar 

  • Li QJ, Chen ZQ, Shi RT, Zhang JQ, Li Y (2010b) Alkaline-salt tolerance indices of Ulmus pumila L. seedling and family evaluation on alkaline-salt tolerance. J Beijing For Univ 32(5):74–81 (in Chinese)

    Google Scholar 

  • Li MR, Li Y, Li HQ, Wu GJ (2011) Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. Tree Physiol 31(3):349–357. doi:https://doi.org/10.1093/treephys/tpr003

    Article  CAS  PubMed  Google Scholar 

  • Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS (2012) Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. S Afr J Bot 78:235–245

    CAS  Google Scholar 

  • Li YY, Yang G, Wei R, Sun YS, Guo YH, Zhang RP, Liu GF (2013) TabZIP transferred Betula platyphylla generation and salt tolerance analysis. J Nanjing For Univ (Natural Sciences Edition) 37(5):6–12 (in Chinese)

    CAS  Google Scholar 

  • Li LX, Zhu TT, Liu J, Zhao C, Li LY, Chen M (2019) An orthogonal test of the effect of NO3, PO43–, K+, and Ca2+ on the growth and ion absorption of Elaeagnus angustifolia L. seedlings under salt stress. Acta Physiol Plant 41(11):179

    Google Scholar 

  • Liang XJ, Li YK, Wang YJ, Duan LY, An W (2019) Evaluation of salt Tolerance of main varieties of Lycium barbarum L. [J]. Ningxia J Agric For Sci Technol 60(06):17–21 (in Chinese)

    Google Scholar 

  • Lie ZY, Xue L (2017) Effects of salt stress on tree growth: a review. World For Res 30(3):30–34 (in Chinese)

    Google Scholar 

  • Liu GF, Yang CP, Cai ZJ, Cheng GL, Zhan LP (2006) Salt tolerance of betA transgenic Populus simonii × P nigra and selection for superior transgenic plants.  Scientia Silvae Sinicae 7:33–36

  • Liu ZB, Bao H, Cai J, Han J, Zhou LR (2014a) A novel thylakoid ascorbate peroxidase from Jatrophacurcas enhances salt tolerance in transgenic tobacco. Int J Mol Sci 15(1):171–185 https://doi.org/10.3390/ijms15010171

    Article  CAS  Google Scholar 

  • Liu ZX, Zhang HX, Tang XY, Liu T, Di WB (2014b) Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress. Acta Ecol Sin 34(02):326–336. in Chinese

    Google Scholar 

  • Liu ZX, Zhu JF, Yang XY, Wu HW, Wei Q, Wei HR, Zhang HX (2018a) Growth performance, organ-level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt stress. PLoS One 13(1):e0191552

    PubMed  PubMed Central  Google Scholar 

  • Liu QQ, Liu RR, Ma YC, Song J (2018b) Physiological and molecular evidence for Na+ and Cl exclusion in the roots of two Suaeda salsa populations. Aquat Bot 146:1–7

    CAS  Google Scholar 

  • Liu X, Chen C, Liu Y, Liu Y, Zhao Y, Chen M (2020) The presence of moderate salt can increase tolerance of Elaeagnus angustifolia seedlings to waterlogging stress. Plant Signal Behav 10:e1743518–e1743512. https://doi.org/10.1080/15592324.2020.1743518

    Article  CAS  Google Scholar 

  • Lu TL, Sun MG, Song SW, Ma WX, Zhang P (2010) Study on photosynthesis characteristics of cercis chinensis bunge under drought and salt stress. J Shandong Agric Univ (Natural Science) 41(2):191–176 (in Chinese)

    Google Scholar 

  • Lu CX, Feng ZT, Yuan F, Han GL, Guo JR, Chen M, Wang BS (2020) The SNARE protein LbSYP61 participates in salt secretion in Limonium bicolor. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104076

    Article  Google Scholar 

  • Lu YJ (2013) Ion homeostasis regulation and salt-tolerance between two non-secretor Mangrove species. Beijing Forestry University, Beijing  in Chinese

  • Lu YJ, Li NY, Sun J, Hou PC, Jing XS, Zhu HP, Deng SR, Han YS, Huang XX, Ma XJ, Zhao N, Zhang YH, Shen X, Chen SL (2013) Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree hysiol 33(1):81–95

    Google Scholar 

  • Lu N, Wei B, Sun YH, Liu X, Chen SY, Zhang WK, Zhang YZ, Li Y (2014) Field supervisory test of DREB-transgenic Populus: salt tolerance, long-term gene stability and horizontal gene transfer. Forests 5(5):1106–1121

    Google Scholar 

  • Luo XL, Wu JH, Li YB, Nan ZR, Guo X, Wang YX, Zhang AH, Wang ZA, Xia GX, Tian Y (2013) C. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8(1):e54002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo ZJ, Sun YH, Lu N, Li Y (2017) Research advances on salt-tolerance mechanism and genetic yransformation of poplar. J Nucl Agric Sci 31(03):482–492 (Acta Agriculturae Nucleatae Sinica)

    Google Scholar 

  • Ma HC, Jiang DM (1998) Research progress in salt resistance of woody plants. J Southw For Univ 1:3–5 (in Chinese)

    Google Scholar 

  • Ma ST (2005) A review of Rhus typhina’s current research situation and it’s trend in China. Northwest A&F University, Xianyang (in Chinese)

    Google Scholar 

  • Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32(1):4–13

    CAS  PubMed  Google Scholar 

  • Ma JC, Lu J, Xu JM, Duan BB, He XD, Liu JQ (2015) Genome-wide identification of WRKY genes in the desert poplar Populus euphratica and adaptive evolution of the genes in response to salt stress. Evo Bioinform 11:EBO-E22067

    Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43(3):471–475

    Google Scholar 

  • Miao HX, Sun MG, Yang, Xia Y, Guo L, Li GL, Zhang JF, Zhang LY (2005) Effects of salt stress on root activity of Melia azedarach L. seedlings. J Shandong Agric Univ 36(1):9–38 (in Chinese)

    Google Scholar 

  • Miles L, Kapos V (2008) Reducing greenhouse gas emissions from deforestation and forest degradation: global land-use implications. Science 320(5882):1454–1455

    CAS  PubMed  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    PubMed  PubMed Central  Google Scholar 

  • Mishra S, Singh B, Misra P, Rai V, Singh NK (2016) Haplotype distribution and association of candidate genes with salt tolerance in Indian wild rice germplasm. Plant cell reports 35(11):2295–2308

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytolog 167(3):645–663

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Musyimi DM, Netondo GW, Ouma G (2008) Growth of avocado plants under saline conditions. Int J Fruit Sci 7:67–69. https://doi.org/10.1300/J492v07n01_06

    Article  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manag 260(10):1623–1639

    Google Scholar 

  • Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2013) Life at the extreme: lessons from the genome. Genome Biol 13(3):241

    Google Scholar 

  • Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Change Biol 19(5):1482–1494

    Google Scholar 

  • Pang CH, Li K, Wang BS (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant 143:355–366

    CAS  PubMed  Google Scholar 

  • Pankova YI, Konyushkova MV (2013) Effect of global warming on soil salinity of the arid regions. Russ Agric Sci 39(5–6):464–467

    Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J  Plant Physiol 161(5):531–542

    CAS  Google Scholar 

  • Pawson SM, Brin A, Brockerhoff EG, Lamb D, Payn TW, Paquette A, Parrotta JA (2013) Plantation forests, climate change and biodiversity. Biodivers Conserv 22(5):1203–1227

    Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24(2):199–217

    Google Scholar 

  • Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morère-Le Paven MC, Limami AM (2014) Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J Exp Bot 65(8):2161–2170

    CAS  PubMed  Google Scholar 

  • Qi Y, Li JP, Chen CX, Li LX, Zheng XL, Liu J, Zhu TT, Pang CH, Wang BS, Chen M (2018) Adaptive growth response of exotic Elaeagnus angustifolia L. to indigenous saline soil and its beneficial effects on the soil system in the Yellow River Delta, China. Trees 32(6):1723–1735

    CAS  Google Scholar 

  • Qin CY, Cheng WJ, Tang LX (2012) Effects of seawater irrigation on several physiological characteristics of Coconut seedling leaves. Chin J Trop Agric 32(3):6–10 (in Chinese)

    Google Scholar 

  • Qin F, Guo TB, Liu ZG, Song MH (2007) Literature review of researches on Pistacia chinensis Bunge. Nonwood For Res 25(4):90–96

    Google Scholar 

  • Qu GZ, Zang L, Xilin H, Gao C, Zheng T, Li KL (2012) Co-transfer of LEA and bZip genes from Tamarix confers additive salt and osmotic stress tolerance in transgenic tobacco. Plant Mo Biol Rep 30(2):512–518

    CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    CAS  Google Scholar 

  • Rehman S, Park IH (2000) Effect of scarification, GA and chilling on the germination of goldenrain-tree (Koelreuteria paniculata Laxm.) seeds. Sci Hortic 85(4):319–324. doi:https://doi.org/10.1016/S0304-4238(00)00126-6

    Article  CAS  Google Scholar 

  • Ren XH (2014) Ecophysiological responses of Robinia pseudoacacia L. and Amorpha fruticose L. seedings to different salt regimes. Shandong University, Jinan (in Chinese)

    Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171

    CAS  PubMed  Google Scholar 

  • Salah IB, Albacete A, Andújar CM, Haouala R, Labidi N, Zribi F, Martinez V, Pérez-Alfocea F, Abdelly C (2009) Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress. J Plant Physiol 166(5):477–488

    PubMed  Google Scholar 

  • Saxe H, Cannell MG, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytolog 149(3):369–399

    CAS  Google Scholar 

  • Sayer J, Chokkalingam U, Poulsen J (2004) The restoration of forest biodiversity and ecological values. For Ecol Manag 201(1):3–11

    Google Scholar 

  • Shao Q, Han N, Ding TL, Zhou F, Wang BS (2014) SsHKT1; 1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct Plant Biol 41(8):790–802

    CAS  PubMed  Google Scholar 

  • Shen ZJ (2018) Mechanism of herbivorous insert resistance and salt tolerance in mangrove plant Avicennia marina. Xiamen University, Xiamen ( in Chinese)

    Google Scholar 

  • Shen JL, Zhong ZF, Huang YJ, Cai GL, Zhou SX, Huang ZC (2020) Effects of salt stress on the metabolism of reactive oxygen and the transcription of CAT genes in eucalyptus. Mol Plant Breed 18(05):1661–1665 (in Chinese)

    Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21(1):81–85

    CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    CAS  PubMed  Google Scholar 

  • Song J, Wang BS (2015) Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot 115(3):541–553

    CAS  PubMed  Google Scholar 

  • Sui N, Tian S, Wang W, Wang M, Fan H (2017) Overexpression of glycerol-3-phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis. Front Plant Sci 8:1337

    PubMed  PubMed Central  Google Scholar 

  • Sun D, Dickinson G (1993) Responses to salt stress of 16 eucalyptus species, Grevillea robusta, Lophostemon confertus and Pinus caribaea var. hondurensis. For Ecol Manag 60(1–2):1–14. https://doi.org/10.1016/0378-1127(93)90019-J

    Article  Google Scholar 

  • Sun HG, Chen YT (2010) Root growth patterns of four coastal shelter forest tree species in response to salt stress. Chin J Ecol 29(12):2365–2372 (in Chinese)

    Google Scholar 

  • Sun HJ, Wang SF, Chen YT (2009) Effects of salt stress on growth and physiological index of 6 tree species. For Res Beijing 22(3):315–324 (in Chinese)

    Google Scholar 

  • Sun ZB, Qi XY, Wang ZL, Li PH, Wu CX, Zhang H, Zhao YX (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89

    CAS  PubMed  Google Scholar 

  • Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74(4–5):367–380

    CAS  PubMed  Google Scholar 

  • Tang XL, Mu XM, Shao HB, Wang HY, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437

    PubMed  Google Scholar 

  • Thorton FC, Schaedle M, Raynal DJ (1988) Sensitivity of red oak (Quercus rubra L.) and American beech (Fagus grandifolia Ehrh.) seedlings to sodium salts in solution culture. Tree Physiol. https://doi.org/10.1093/treephys/4.2.167

    Article  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Gómez-rodrómez‐rodríguez MV, Chaki M, Pedrajas JR, FERNÁNDEZ‐OCAÑA A, DEL RÍO LA, Barroso JB (2006) The dehydrogenase‐mediated recycling of NADPH is a key antioxidant system against salt‐induced oxidative stress in olive plants. Plant Cell Environ 29(7):1449–1459

    CAS  PubMed  Google Scholar 

  • Wang RG (2007) Salt-induced oxidative stress and the relevance to salt tolerance in poplar. Beijing Forestry University, Beijing

    Google Scholar 

  • Wang CQ, Song H (2003) Selection of salt-tolerance variants from Rhododendron. Acta Agric Nucl Sin 17(3):179–183 (in Chinese)

    CAS  Google Scholar 

  • Wang GB, Cao FL, Zhang WX (2003a) A study on salt tolerance of Ginkgo biloba varieties. Sci Silv Sin 39(5):168–172 (in Chinese)

    Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003b) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    CAS  PubMed  Google Scholar 

  • Wang L, Su Q, An LJ (2007a) Transformation of Populus × euramericana “Neva” with Betaine-aldehyde Dehydrogenase Gene. J Anhui Agric Sci 35(4):1000 (in Chinese)

    Google Scholar 

  • Wang RG, Chen SL, Deng L, Fritz E, Hüttermann A, Polle A (2007b) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21(5):581

    CAS  Google Scholar 

  • Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010a) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167(3):222–230

    CAS  PubMed  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010b) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37(2):1119

    CAS  PubMed  Google Scholar 

  • Wang C, Yu MK, Wang ZX, Zhang C, Wu TG, Cheng XR, Tao J (2011) Difference of response to salt stress of nine clones of Catalpa bungei. J Nanjing For Univ (Natural Sciences) 35(02):20–24 (in Chinese)

    CAS  Google Scholar 

  • Wang YC, Wang DX (2012) Effects of salt stress on chlorophyll content and net photosynthetic rate of woody saltbush. Trans Chin Soc Agric Eng 28(10):151–158

    Google Scholar 

  • Wang FX, Xu YG, Wang S, Shi WW, Liu RR, Feng G, Song J (2015a) Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa. Plant Physiol Biochem 95:41–48

    CAS  PubMed  Google Scholar 

  • Wang XH, Han HY, Yan J, Chen F, Wei W (2015b) A new AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco. Appl Biochem Biotechnol 176(2):582–597

    CAS  PubMed  Google Scholar 

  • Wang JW, Xu M, Gu YC, Xu LA (2017) Differentially expressed gene analysis of Tamarix chinensis provides insights into NaCl-stress response. Trees 31(2):645–658

    CAS  Google Scholar 

  • Wang FX, Yin CH, Song YP, Li Q, Tian CY, Song J (2018) Reproductive allocation and fruit-set pattern in the euhalophyte Suaeda salsa in controlled and field conditions. Plant Biosyst 152(4):749–758

    Google Scholar 

  • Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8(5):200–201

    CAS  PubMed  Google Scholar 

  • Wei HX, Sun MG, Xia Y, Sun FX, Li GL (2005) Effects of NaCl stress on the membrane permeability and the content of osmotic adjustable organic substances of Melia azedarach seedlings. Gansu nongye daxue xuebao 40(5):599–603

    Google Scholar 

  • Wei QJ, Feng FF, Gu QQ (2015) Advances on salinity responses and tolerance in citrus. J Fruit Sci 32(01):136–141 (in Chinese)

    CAS  Google Scholar 

  • Wen J, Gao ZM (2012) Effect of salt stress on Germination and Seedling growth of Lagerstroemia indica L. Northern Hortic 2:40–41

    Google Scholar 

  • Wu QS, Zou YN (2009) Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. Notulae Bot Horti Agrobot Cluj-Napoca 37(1):133–138. https://doi.org/10.15835/nbha3713109

    Article  Google Scholar 

  • Wu YX, Ding N, Zhao X, Zhao MG, Chang ZQ, Liu JQ, Zhang LX (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant molecular biology 65(1–2):1

    CAS  PubMed  Google Scholar 

  • Xia JB, Xu JW, Li CR, Lu ZH (2010) Ecological Characteristics of Soil Moisture in Degraded Robinia pseucdoacacia Plantation in Yellow River Delta Area. Bull Soil Water Conserv 30(6):75–80. in Chinese

    Google Scholar 

  • Xu R (2015) Effects of salt stress on physiological of Hibiscus syriacus. Tianjin Agric Sci 21(06):142–145 (in Chinese)

    Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2008) Functions of the ERF transcription factor family in plants. Botany 86(9):969–977

    CAS  Google Scholar 

  • Xu YG, Zhao YQ, Duan HM, Sui N, Yuan F, Song J (2017) Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genom 18(1):727

    Google Scholar 

  • Yan LP, Wu DJ, Wang YH, Liu CL, Shu DF, Ren F (2019) Salt tolerance response and comprehensive evaluation for four kinds of Fraxinus. Acta Botan Boreali-Occidentalia Sin 39(07):1270–1278. in Chinese

    Google Scholar 

  • Yang CP, Liu GF, Liang HW, Zhang H (2001) Study on the transformation of Populus simonii × P. nigra with salt resistance gene Bet-A. Sci Silv Sin 37(6):34–38

    Google Scholar 

  • Yang TT, Zhang W (2013) Transformation of Mangrove betaine/proline transporter gene Bet/ProT2 into rice and salt-tolerance study in transgenic plants. J Nanjing Agric Univ 36(05):51–58 (in Chinese)

    CAS  Google Scholar 

  • Yang YL, Shi RX, Wei XL, Fan Q, An LZ (2010) Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant Cell Tissue Organ Cult 102(3):387–395

    CAS  Google Scholar 

  • Yang Z, Wang Y, Wei XC, Zhao X, Wang BS, Sui N (2017) Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum. Plant Mol Biol Rep 35(6):586–599

    CAS  Google Scholar 

  • Yao WJ, Zhao K, Cheng ZH, Li XY, Zhou B, Jiang TB (2018) Transcriptome analysis of poplar under salt stress and over-expression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis. Front Plant Scit 9:1121

    Google Scholar 

  • Yao XM, Ou C, Zhang YL, Yang LM, Xu M, Wang QQ, Qu CQ (2020) Effects of abscisic acid on ion absorption and photosynthesis of Toona sinensis seedlings under salt stress. J Northeast For Univ 48(08):27–32 (in Chinese)

    Google Scholar 

  • Yuan F, Chen M, Yang JC, Leng BY, Wang BS (2014) A system for the transformation and regeneration of the recretohalophyte Limonium bicolor. In Vitro Cellular Developmental Biology-Plant 50(5):610–617

    Google Scholar 

  • Yuan F, Lyu MJA, Leng BY, Zheng GY, Feng ZT, Li PH, Zhu XG, Wang BS (2015) Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant Cell Environ 38(8):1637–1657

    CAS  PubMed  Google Scholar 

  • Yuan F, Leng BY, Wang BS (2016) Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci 7:977

    PubMed  PubMed Central  Google Scholar 

  • Yuan F, Guo JR, Shabala S, Wang BS (2019) Reproductive physiology of halophytes: current standing. Front Plant Sci 9:1954

    PubMed  PubMed Central  Google Scholar 

  • Yue YS, Zhang MC, Zhang JC, Duan LS, Li ZH (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169(3):255–261

    CAS  PubMed  Google Scholar 

  • Zhang DY, Pan BR, Yin LK (2003) The photogeographical studies of Tamarix (Tamaricaceae). Acta Bot Yunnan 25(4):415–427 (in Chinese)

    Google Scholar 

  • Zhang JF (2008) Discussion on ecological rehabilitation of salt-affected soils. Res Soil Water Conserv 04:74–78

    Google Scholar 

  • Zhang HX, Song D, Liu ZX (2008) Study on physiological characteristics and salt tolerance for seedlings of 11 tree species. For Res Chin Acad For 21(2):168

    CAS  Google Scholar 

  • Zhang SR, Song J, Wang H, Feng G (2010) Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. J Plant Ecol 3(4):259–267

    Google Scholar 

  • Zhao FY, Guo SL, Wanga Z, Zhao YX, Zhang H (2003) Recent advances in study on transgenic plants for salt tolerance. J Plant Physiol Mo Biol 29(3):171–178

    CAS  Google Scholar 

  • Zhou H (2017) Identification and Expression Analysis of Drought-Resistant Related 4 Transcription Factor Families in Mulberry (Morus L.) [D]. Jiangsu University of Science and Technology. (Doctoral dissertation)

  • Zhou ML, Ma JT, Zhao YM, Wei YH, Tang YX, Wu YM (2012) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506(1):10–17

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    CAS  PubMed  Google Scholar 

  • Zhu TT, Lin J, Zhang MJ, Li LY, Zhao C, Chen M (2019) Phytohormone involved in salt tolerance regulation of Elaeagnus angustifolia L. seedlings. J For Res 24(4):235–242

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Agricultural Variety Improvement Project of Shandong Province (2019LZGC009), Shandong Provincial "Bohai Granary" Science and Technology Demonstration Project (2019BHLC004), and the major projects of science and technology in Shandong province (2017CXGC0311), and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province

Conflict of interest:

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoshan Wang or Min Chen.

Additional information

Editorial Responsibility: M. Buckeridge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, Y., Han, G. et al. Salt tolerance mechanisms in trees: research progress. Trees 35, 717–730 (2021). https://doi.org/10.1007/s00468-020-02060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-020-02060-0

Keywords:

Navigation