Skip to main content
Log in

Structural changes in the micropylar region and overcoming dormancy in Cerrado palms seeds

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Interaction between embryo growth and cytochemical changes in the micropylar endosperm promote the overcoming of dormancy in Cerrado palm seeds.

Abstract

Dormancy in palm seeds is modulated by structural components. However, changes in the structures that are responsible for permitting the conclusion of germination are still poorly understood. This study aimed to identify morphological, anatomical, physiological and cytochemical changes during germination in the micropylar region of seeds of Cerrado palms (Acrocomia aculeata, Attalea vitrivir and Butia capitata) with different levels of dormancy. The role of opercular components, the effect of exogenous GA3, and endo-β-mannanase activity on embryo growth and opercular resistance were evaluated. Changes in protein reserves and in the pectic profile of the cell walls of the micropylar endosperm were investigated using cytochemical techniques. Dormancy is determined by the inability of the embryo to displace the operculum, whose resistance decreases with imbibition, but is not influenced by GA3 or endo-β-mannanase activity. Embryo growth prior to the conclusion of germination is directly related to the displacement of the operculum and is stimulated by GA3 in seeds of A. aculeata and A. vitrivir. Initially, the displacement of the operculum occurs with the separation of cells in the region of weakness of the micropylar endosperm after mobilization of protein reserves. The cell walls in the region of weakness are rich in pectic compounds, the composition of which varies over time. Although the mechanical effect of embryo growth is a determinant in the completion of germination, the remodeling of the pectic profile of the middle lamella and cell walls in the micropylar endosperm can be considered important in its control in palm seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baskin JM, Baskin CC (2014) What kind of seed dormancy might palms have. Seed Sci Res 24:17–22

    Article  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds—physiology of development, germination and dormancy. Springer, New York

    Google Scholar 

  • Bicalho EM, Pintó-Marijuan M, Morales M, Müller M, Munné-Bosch S, Garcia QS (2015) Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Plant Biol 17:990–996

    Article  CAS  PubMed  Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carneiro RGS, Pacheco P, Isaias RMS (2015) Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? Plos One. https://doi.org/10.1371/journal.pone.0129331

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho VS, Ribeiro LM, Lopes PSN, Agostinho CO, Matias LJ, Mercadante-Simões MO, Correia LNF (2015) Dormancy is modulated by seed structures in palms of the cerrado biome. Aust J Bot 63:444–454

    Article  Google Scholar 

  • Dekkers BJ, Pearce S, van Bolderen-Veldkamp RP, Marshall A, Widera P, Gilbert J, Drost HJ, Bassel GW, Müller K, King JR, Wood ATA, Grosse I, Quint M, Krasnogor N, Leubner-Metzger G, Holdsworth MJ, Bentsink L (2013) Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol 163:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias DS, Lopes PSN, Ribeiro LM, Oliveira LAA, Mendes EV, Carvalho VS (2013) Effects of seed structures, sucrose and gibberellic acid on the germination of Butia capitata (Arecaceae). Seed Sci Technol 41:371–382

    Article  Google Scholar 

  • Dias DS, Ribeiro LM, Lopes PSN, Munné-Bosch S, Garcia QS (2017) Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds. Plant Physiol Biochem 118:168–177

    Article  CAS  PubMed  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-β-mannanase activity. Ann Bot 96:1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138A

    Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of roots apices. Planta 181:512–521

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA 107:19108–19113

    Article  CAS  PubMed  Google Scholar 

  • Magalhães HM, Lopes PSN, Ribeiro LM, Sant’Anna-Santos BF, Oliveira DMT (2013) Structure of the zygotic embryos and seedlings of Butia capitata (Arecaceae). Trees 27:273–283

    Article  Google Scholar 

  • Mazzottini-dos-Santos HC, Ribeiro LM, Mercadante-Simões MO, Sant’Anna-Santos BF (2015) Ontogenesis of the pseudomonomerous fruits of Acrocomia aculeata (Arecaceae): a new approach to the development of pyrenarium fruits. Trees 29:199–214

    Article  CAS  Google Scholar 

  • Mazzottini-dos-Santos HC, Ribeiro LM, Oliveira DMT (2017) Roles of the haustorium and endosperm during the development of seedlings of Acrocomia aculeata (Arecaceae): dynamics of reserve mobilization and accumulation. Protoplasma 254:1563–1578

    Article  PubMed  Google Scholar 

  • Müller K, Levesque-Tremblay G, Bartels S, Weitbrecht K, Wormit A, Usadel B, Haughn G, Kermode AR (2013) Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiol 161:305–316

    Article  CAS  PubMed  Google Scholar 

  • Murugesan P, Ravichandran G, Shareef M (2015) Seed germination and ultrastructural changes in oil palm (Elaeis guineensis) hybrid seed influenced by heat treatments. Indian J Agr Sci 85:1419–1423

    CAS  Google Scholar 

  • Neves SC, Ribeiro LM, Cunha IRG, Pimenta MAS, Mercadante-Simões MO, Lopes PSN (2013) Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir). Flora 208:68–78

    Article  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Norsazwan MG, Puteh AB, Rafil MY (2016) Oil palm (Elaeis guineensis) seed dormancy type and germination pattern. Seed Sci Technol 44:15–26

    Article  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Oliveira NCC, Lopes PSN, Ribeiro LM, Mercadante-Simões MO, Oliveira LAA, Silvério FO (2013) Seed structure, germination, and reserve mobilization in Butia capitata (Arecaceae). Trees 27:1633–1645

    Article  Google Scholar 

  • Orozco-Segovia A, Batis AI, Rojas-Aréchiga M, Mendoza A (2003) Seed biology of palms: a review. Palms 47:79–94

    Google Scholar 

  • Paiva EAS, Pinho SZ, Oliveira DMT (2011) Large plant samples: how to process for GMA embedding? In: Chiarini-Garcia H, Melo RCN (eds) Light microscopy: methods and protocols. Springer/Humana Press, New York, pp 37–49

    Chapter  Google Scholar 

  • Pérez HE, Criley RA, Baskin CC (2008) Promoting germination in dormant seeds of Pritchardia remota (Kuntze) Beck, an endangered palm endemic to Hawaii. Nat Area J 28:251–260

    Article  Google Scholar 

  • Pinho GP, Matoso JRM, Silvério FO, Mota WC, Lopes PSN, Ribeiro LM (2014) A new spectrophotometric method for determining the enzymatic activity of endo-β-mannanase in seeds. J Brazil Chem Soc 25:1246–1252

    CAS  Google Scholar 

  • Ribeiro LM, Souza PP, Rodrigues AG Jr, Oliveira TGS, Garcia QS (2011) Overcoming dormancy in macaw palm diaspores, a tropical species with potential for use as biofuel. Seed Sci Technol 39:303–317

    Article  Google Scholar 

  • Ribeiro LM, Oliveira DMT, Garcia QS (2012) Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae) during in vitro germination. Trees 26:851–863

    Article  Google Scholar 

  • Ribeiro LM, Silva PO, Andrade IG, Garcia QS (2013) Interaction between embryo and adjacent tissues determines the dormancy in macaw palm seeds. Seed Sci Technol 41:345–356

    Article  Google Scholar 

  • Ribeiro LM, Garcia QS, Müller M, Munné-Bosch S (2015) Tissue specific hormonal profiling during dormancy release in macaw palm seeds. Physiol Plant 153:627–642

    Article  CAS  PubMed  Google Scholar 

  • Scheler C, Witbrech K, Pearce SP, Hampstead A, Büttner-Mainik A, Lee KJD, Voegele A, Oracz K, Dekkers BJW, Wang X, Wood ATA, Bentsink L, King JR, Knox JP, Holdsworth MJ, Müller K, Leubner-Metzger G (2015) Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol 167:200–215

    Article  CAS  PubMed  Google Scholar 

  • Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783

    CAS  PubMed  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohyd Res 344:1858–1862

    Article  CAS  Google Scholar 

  • Vidal BC (1970) Dichroism in collagen bundles stained with Xylidine-Ponceau 2R. Ann Histochim 15:289–296

    Google Scholar 

  • Willats WGT, Orfila C, Limberg G, Buchholt HC, Alebeek GWM, Voragen AGJ, Marcus SE, Christensen TMIE., Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Duermeyer L, Leoveanu C, Nambara E (2014) The functions of the endosperm during seed germination. Plant Cell Physiol 9:1521–1533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil, process CRA-APQ-01335-13), for financial support, and the Centro de Aquisição e Processamento de Imagens of the Universidade Federal de Minas Gerais, Brazil, for the use of equipment and obtaining images. We thank Rosy M.S. Isaias and Maria Olívia M. Simões for kindly permitting us to use equipment and reagents in their laboratories and for providing theoretical support, and Cibele B. de Sousa and Wagner A. Rocha for providing indispensable technical support with the immunocytochemical analyses. H.C.M.S. thanks Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES, Brazil) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil) for doctoral scholarships, and D.M.T.O. and L.M.R. thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, processes 308117/2014-0 and 304627/2015-1, respectively) for research productivity grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Monteiro Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Knoche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzottini-dos-Santos, H.C., Ribeiro, L.M. & Oliveira, D.M.T. Structural changes in the micropylar region and overcoming dormancy in Cerrado palms seeds. Trees 32, 1415–1428 (2018). https://doi.org/10.1007/s00468-018-1723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1723-y

Keywords

Navigation