Skip to main content

Advertisement

Log in

Changes in leaf gas exchange and biomass of Eucalyptus camaldulensis in response to increasing drought stress induced by polyethylene glycol

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Under increasing short-term drought stress, E. camaldulensis plantlets showed reduced stomatal conductance, then decreased carboxylation efficiency, and finally, reduced quantum efficiency of photosynthesis and chlorophyll content.

Abstract

We evaluated the physiological responses of a drought-tolerant (DT) clone and a drought-sensitive (DS) clone of Eucalyptus camaldulensis to drought stress. We evaluated leaf gas exchange, chlorophyll fluorescence, chlorophyll content, and biomass of 4-month-old eucalyptus plantlets during a graduated series of drought stress treatments over 24 days. The plantlets were grown in half-strength Hoagland’s solution, and drought stress was imposed by adding polyethylene glycol (PEG 6000) to the nutrient solution. The plantlets were subjected to three stepwise levels of drought stress, each 8 days long. The osmotic potential of the nutrient solution was −70, −140, and −280 kPa under mild, moderate, and severe drought stress, respectively. Compared with unstressed plantlets, the drought-stressed plantlets of both clones showed significant decreases in leaf gas exchange, chlorophyll fluorescence parameters, and biomass accumulation. The limitation of photosynthesis under mild drought stress was mainly because of reduced stomatal conductance. The reduction in the photosynthetic rate (P n ) under moderate to severe drought stress was because of both stomatal and non-stomatal limitation; that is stomatal closure, reduced carboxylation efficiency, reduced quantum efficiency, and decreased chlorophyll content. Both clones used stomatal control as an avoidance mechanism under drought stress. The differences between the two clones were already shown under mild drought stress. Compared to its non-stressed condition, the DS clone showed larger decreases in P n , stomatal conductance, and transpiration rate than the DT clone. The stepwise scheme in imposing drought stress can differentiate the drought response traits in E. camaldulensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves AAC, Setter TL (2004) Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environ Exp Bot 51:259–279. doi:10.1016/j.envexpbot.2003.11.005

    Article  CAS  Google Scholar 

  • Arndt SK, Clifford SC, Wanek W, Jones HG, Popp M (2001) Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol 21:705–715. doi:10.1093/treephys/21.11.705

    Article  CAS  PubMed  Google Scholar 

  • Barcelar EA, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192. doi:10.1016/j.envexpbot.2006.10.003

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. doi:10.1080/07352680590910410

    Article  CAS  Google Scholar 

  • Bedon F, Majada J, Feito I, Chaumeil P, Dupuy JW, Lomenech AM, Barre A, Gion JM, Plomion C (2011) Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.). Plant Physiol Biochem 49:69–76. doi:10.1016/j.plaphy.2010.09.020

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. doi:10.1016/S1360-1385(97)82562-9

    Article  Google Scholar 

  • Cha-um S, Kirdmanee C (2010) Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus camaldulensis Dehnh.). New For 40:349–360. doi:10.1007/s11056-010-9204-1

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought–from genes to the whole plant. Funct Plant Biol 30:239–264. doi:10.1071/FP02076

    Article  CAS  Google Scholar 

  • Costa e Silva F, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24:1165–1172. doi:10.1093/treephys/24.10.1165

    Article  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189. doi:10.1093/aob/mcf027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22:39–48. doi:10.1046/j.1365-3040.1999.00371.x

    Article  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298. doi:10.1111/j.1365-3040.2007.01700.x

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810. doi:10.1111/j.1469-8137.2007.02047.x

    Article  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Gindaba J, Rozanov A, Negash L (2005) Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. For Ecol Manag 205:127–138. doi:10.1016/j.foreco.2004.10.056

    Article  Google Scholar 

  • Gucci R, Massai R, Xiloyannis C, Flore JA (1996) The effect of drought and vapour pressure deficit on gas exchange of young kiwifruit (Actinidia deliciosa var. deliciosa) Vines. Ann Bot 77:605–613. doi:10.1093/aob/77.6.605

    Article  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553. doi:10.1046/j.1365-3040.1998.00309.x

    Article  CAS  Google Scholar 

  • Hsiao TC, Xu L (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616. doi:10.1093/jexbot/51.350.1595

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

    Article  Google Scholar 

  • Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191. doi:10.1111/j.1399-3054.2006.00638.x

    Article  CAS  Google Scholar 

  • Li F, Bao W, Wu N (2011) Morphological, anatomical and physiological responses of Campylotropis polyantha (Franch.) Schindl. seedlings to progressive water stress. Sci Hort 127:436–443. doi:10.1016/j.scienta.2010.10.017

    Article  Google Scholar 

  • Lima WP, Jarvis P, Rhizopoulou S (2003) Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress. Sci Agric 60:231–238. doi:10.1590/S0103-90162003000200005

    Article  Google Scholar 

  • Mediavilla S, Santiago H, Escudero A (2002) Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous mediterranean oak species. Photosynthetica 40:553–559. doi:10.1023/A:1024399919107

    Article  CAS  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905. doi:10.1093/aob/mcf079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mihailović N, Lazarević M, Dželetović Ž, Vučković M, Durdević M (1997) Chlorophyllase activity in wheat, Triticum aestivum L. leaves during drought and its dependence on the nitrogen ion form applied. Plant Sci 129:141–146. doi:10.1016/S0168-9452(97)00189-1

    Article  Google Scholar 

  • Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol 69:1376–1381. doi:10.1104/pp.69.6.1376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogbonnaya CI, Nwalozie MC, Roy-Macauley H, Annerose DJM (1998) Growth and water relations of Kenaf (Hibicus cannabinus L.) under water deficit on a sandy soil. Ind Crop Prod 8:65–76. doi:10.1016/S0926-6690(97)10011-5

    Article  Google Scholar 

  • Oo MW, Toshio N (2002) A basic study of greening of dry-zone in Myanmar; Physiological responses to drought stress in Eucalyptus camaldulensis and Quercus phyllraeoides grown in different soil conditions. Kyushu J For Res 55:58–61

    Google Scholar 

  • Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A (2012) Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem 60:1–11. doi:10.1016/j.plaphy.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  • Rad MH, Assare MH, Banakar MH, Soltani M (2011) Effects of different soil moisture regimes on leaf area index, specific leaf area and water use efficiency in eucalyptus (Eucalyptus camaldulensis Dehnh) under dry climatic conditions. Asian J Plant Sci 10:294–300. doi:10.3923/ajps.2011.294.300

    Article  Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29. doi:10.1023/A:1020125719386

    Article  Google Scholar 

  • Rolando CA, Little KM (2008) Measuring water stress in Eucalyptus grandis Hill ex Maiden seedlings planted into pots. S Afr J Bot 74:133–138. doi:10.1016/j.sajb.2007.08.004

    Article  Google Scholar 

  • Rouhi V, Samson R, Lemeur R, Van Damme P (2007) Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environ Exp Bot 59:117–129. doi:10.1016/j.envexpbot.2005.10.001

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Hormann H, Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336

    Google Scholar 

  • Sepeta H, Costa JM, Lourenço T, Maroco J, van der Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84. doi:10.1016/j.envexpbot.2012.08.012

    Article  Google Scholar 

  • Shao H, Chu L, Jaleel CA, Zhao C (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225. doi:10.1016/j.crvi.2008.01.002

    Article  PubMed  Google Scholar 

  • Tay AC, Abdullah AM, Awang M, Furukawa M (2007) Midday depression of photosynthesis in Enkleia malaccensis, a woody climber in a tropical rainforest. Photosynthetica 45:189–193. doi:10.1007/s11099-007-0031-3

    Article  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917. doi:10.1038/44842

    Article  CAS  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and by the Research Development Office, Higher Education Commission, Ministry of Education (AG-BIO/PERDO-CHE). We thank the Siam Forestry Co., Ltd. for providing plant materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suntaree Yingjajaval.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkhao, W., Yingjajaval, S. Changes in leaf gas exchange and biomass of Eucalyptus camaldulensis in response to increasing drought stress induced by polyethylene glycol. Trees 29, 1581–1592 (2015). https://doi.org/10.1007/s00468-015-1240-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1240-1

Keywords

Navigation