Skip to main content
Log in

Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This study provides new data and an alternative framework to the debate of tree carbon economy in a context of increasing stress.

Abstract

For long-living trees, the resilience in times of stress is directly linked to the amount of accessible reserves. Despite the simplicity of this principle, the understanding of how carbon reserves limit growth and/or induce mortality under global change is still debated. In this study, we quantify how anatomical properties of rays—one of the main container for carbon reserves in tree stems—vary among sites, individuals, and annual rings of Larix gmelinii growing in contrasting sites in Siberia to verify if (1) the ray proportion and anatomical structure is linked to the environment, and/or (2) to changes in other wood tissues. Our observations have highlighted that ray proportion mainly varies among individuals, but little among sites and consecutive annual rings. We also observed that ray size and density scale to the wood structure with a relatively constant ratio of ~2.5 rays per tracheid, independent of site conditions. These results suggest that the functional connection between the anatomy of rays and tracheid is unaffected by environment and highlight the importance of considering allometric relations in ecological comparisons. Comparative studies of long-term trajectory of ray proportion of living and dead trees might unravel observed variability among individuals validating the link between long-term depleted reserves and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abaimov AP, Koropachinskii IY (1984) Listvennitsa Gmelina i Kayandera (Gmelin Larch and Cajander Larch), Novosibirsk

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Aloni R (2014) Ecophysiological implications of vascular differentiation and plant evolution. Trees Struct Funct. doi:10.1007/s00468-014-1070-6

    Google Scholar 

  • Anfodillo T, Petit G, Crivellaro A (2013) Axial conduit widening in woody species: a still neglected anatomical pattern. Iawa J 34:352–364

    Article  Google Scholar 

  • Arbellay E, Stoffel M, Bollschweiler M (2010) Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event. Tree Physiol 30:1290–1298

    Article  PubMed  Google Scholar 

  • Arbellay E, Fonti P, Stoffel M (2012) Duration and extension of anatomical changes in wood structure after cambial injury. J Exp Bot 63:3271–3277

    Article  CAS  PubMed  Google Scholar 

  • Baas P, Miller RB (1985) Functional and ecological wood anatomy some introductory comments. Iawa Bull 6:281–282

    Article  Google Scholar 

  • Bamber RK (1976) Heartwood, its function and formation. Wood Sci Technol 10:1–8

    Article  Google Scholar 

  • Braun HJ (1970) Funktionelle Histologie der sekundären Sprossachse. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees Struct Funct 27:485–496

    Article  Google Scholar 

  • Bryukhanova MV, Kirdyanov AV, Prokushkin AS, Silkin PP (2013) Specific features of xylogenesis in Dahurian larch, Larix gmelinii (Rupr.) Rupr., growing on permafrost soils in Middle Siberia. Russ J Ecol 44:361–366

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu XM, Richardson AD (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Carlquist S (1985) Ecological wood anatomy of some southern-California plants. Am J Bot 72:801

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeSoto L, De la Cruz M, Fonti P (2011) Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can J Forest Res 41:1280–1294

    Article  Google Scholar 

  • Eckstein D (2013) ‘A new star’—but why just parenchyma for dendroclimatology? New Phytol 198:328–330

    Article  PubMed  Google Scholar 

  • Eckstein D, Schweingruber F (2009) Dendrochronologia—a mirror for 25 years of tree-ring research and a sensor for promising topics. Dendrochronologia 27:7–13

    Article  Google Scholar 

  • Esteban LG, Martin JA, de Palacios P, Fernandez FG, Lopez R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees Struct Funct 24:19–30

    Article  Google Scholar 

  • Fonti P, Jansen S (2012) Xylem plasticity in response to climate. New Phytol 195:734–736

    Article  PubMed  Google Scholar 

  • Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Fonti P, Bryukhanova MV, Myglan VS, Kirdyanov AV, Naumova OV, Vaganov EA (2013) Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am J Bot 100:1332–1343

    Article  PubMed  Google Scholar 

  • Galiano L, Martinez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759

    Article  CAS  PubMed  Google Scholar 

  • Gartner BL (1995) Plant stems physiology and functional morphology. Academic Press, San Diego

    Google Scholar 

  • Gärtner H, Schweingruber F (2013) Microscopic preparation techniques for plant stem analysis. Remagen

  • Gartner BL, Baker DC, Spicer R (2000) Distribution and vitality of xylem rays in relation to tree leaf area in Douglas-fir. Iawa J 21:389–401

    Article  Google Scholar 

  • Gruber A, Pirkebner D, Florian C, Oberhuber W (2012) No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress. Plant Biol 14:142–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruber A, Pirkebner D, Oberhuber W (2013) Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers. Tree Physiol 33:1076–1083

    Article  CAS  PubMed  Google Scholar 

  • Hartig R, Somerville W, Ward HM (1894) Text-book of the diseases of trees. Offices of “Country life”, London

  • Hereş AM, Camarero JJ, López BC, Martínez-Vilalta J (2014) Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. Trees Struct Funct 28:1737–1750

    Article  Google Scholar 

  • Hetzer T, Bräuning A, Leuschner H-H (2014) High-resolution climatic analysis of wood formation of Corsican pine from intra-annual tracheid profiles. Trees Struct Funct (in press)

  • Hoch G, Richter A, Korner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jacquet J-S, Bosc A, O’Grady A, Jactel H (2014) Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Tree Physiol 34:367–376

    Article  CAS  PubMed  Google Scholar 

  • Kilpelainen A, Gerendiain AZ, Luostarinen K, Peltola H, Kellomaki S (2007) Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine. Tree Physiol 27:1329–1338

    Article  CAS  PubMed  Google Scholar 

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees Struct Funct 17:61–69

    Article  Google Scholar 

  • Kirdyanov AV, Prokushkin AS, Tabakova MA (2013) Tree-ring growth of Gmelin larch under contrasting local conditions in the north of Central Siberia. Dendrochronologia 31:114–119

    Article  Google Scholar 

  • Korner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology ecophysiology and stress physiology of functional groups. Springer, Berlin

    Google Scholar 

  • Lei H, Milota MR, Gartner BL (1996) Between- and within-tree variation in the anatomy and specific gravity of wood in Oregon white oak (Quercus garryana Dougl). Iawa J 17:445–461

    Article  Google Scholar 

  • Lev-Yadun S (1998) The relationship between growth-ring width and ray density and ray height in cell number in the earlywood of Pinus halepensis and Pinus pinea. Iawa J 19:131–139

    Article  Google Scholar 

  • Lev-Yadun S, Aloni R (1992) The role of wounding and partial girdling in differentiation of vascular rays. Int J Plant Sci 153:348–357

    Article  Google Scholar 

  • Lev-Yadun S, Aloni R (1995) Differentiation of the ray system in woody-plants. Bot Rev 61:45–84

    Article  Google Scholar 

  • Martin JA, Esteban LG, de Palacios P, Fernandez FG (2010) Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees Struct Funct 24:1017–1028

    Article  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Meinzer FC, Lachenbruch B, Dawson TE (2011) Size-and age-related changes in tree structure and function. Springer, Dordrecht

    Book  Google Scholar 

  • Myer JE (1922) Ray volumes of the commercial wood of the United States and their significance. J Forest 20:337–351

    Google Scholar 

  • Oladi R, Brauning A, Pourtahmasi K (2014) “Plastic” and “static” behavior of vessel-anatomical features in Oriental beech (Fagus orientalis Lipsky) in view of xylem hydraulic conductivity. Trees Struct Funct 28:493–502

    Article  Google Scholar 

  • Olano JM, Almeria I, Eugenio M, von Arx G (2013a) Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct Ecol 27:1295–1303

    Article  Google Scholar 

  • Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V (2013b) New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytol 198:486–495

    Article  PubMed  Google Scholar 

  • Overdieck D, Ziche D, Bottcher-Jungclaus K (2007) Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations. Tree Physiol 27:261–268

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing

  • Regier N, Streb S, Zeeman SC, Frey B (2010) Seasonal changes in starch and sugar content of poplar (Populus deltoides × nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots. Tree Physiol 30:979–987

    Article  CAS  PubMed  Google Scholar 

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol 197:850–861

    Article  CAS  PubMed  Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF (2004) Plant structure: function and development: a treatise on anatomy and vegetative development, with special reference to woody plants. Blackburn Press, Caldwell

    Google Scholar 

  • Ryan MG (2011) Tree responses to drought. Tree Physiol 31:237–239

    Article  PubMed  Google Scholar 

  • Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281

    Article  PubMed  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    Article  CAS  PubMed  Google Scholar 

  • Salleo S, Trifilo P, Esposito S, Nardini A, Lo Gullo MA (2009) Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol 36:815–825

    Article  Google Scholar 

  • Simard S, Giovannelli A, Treydte K, Traversi ML, King GM, Frank D, Fonti P (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923

    Article  CAS  PubMed  Google Scholar 

  • Spicer R (2014) Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J Exp Bot 65:1829–1848

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verheyden A, De Ridder F, Schmitz N, Beeckman H, Koedam N (2005) High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol 167:425–435

    Article  PubMed  Google Scholar 

  • von Arx G, Carrer M (2014) ROXAS—a new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32:290–293

    Article  Google Scholar 

  • von Arx G, Dietz H (2005) Automated image analysis of annual rings in the roots of perennial forbs. Int J Plant Sci 166:723–732

    Article  Google Scholar 

  • von Arx G, Archer SR, Hughes MK (2012) Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann Bot 109:1091–1100

    Article  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289

    Article  CAS  PubMed  Google Scholar 

  • Wimmer R, Grabner M (2000) A comparison of tree-ring features in Picea abies as correlated with climate. Iawa J 21:403–416

    Article  Google Scholar 

  • Ziche D, Overdieck D (2004) CO2 and temperature effects on growth, biomass production, and stem wood anatomy of juvenile Scots pine (Pinus sylvestris L.). J Appl Bot Food Qual 78:120–132

    Google Scholar 

  • Zuur AF (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Author contribution statement

PF and GvA have designed the study; AK has sampled the wood material; MT has performed the tree-ring width and anatomical survey under the guidance of PF, GvA and MB; and PF has written the manuscript with the support of all coauthors.

Acknowledgments

This work profited from discussions and activities within the framework of the COST Action STReESS (COST-FP1106). The authors are thankful for support from the Swiss State Secretariat for Education for Research and Innovation SERI for the C12.0100 grant. MT received a President scholarship from the Ministry of Education in Science of the Russian Federation for a four-month stay at WSL in Switzerland to perform measurements and analysis. AK has sampled the wood material and measured tree-ring width (Russian Science Foundation; project 14-14-00295).

Conflict of interest

The authors confirm that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Fonti.

Additional information

Communicated by J. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonti, P., Tabakova, M.A., Kirdyanov, A.V. et al. Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia. Trees 29, 1165–1175 (2015). https://doi.org/10.1007/s00468-015-1197-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1197-0

Keywords

Navigation