Skip to main content
Log in

Effects of topography and crown-exposure on olive tree phenology

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The importance of the olive tree phenology from agricultural and ecological point of view justifies the need to carry out phenological studies at local and regional scales. Furthermore, flowering phenology in the olive tree (Olea europaea L.) is an important indicator of climatic change in the Mediterranean region. In this paper, we study the effects of altitude and the exposure of crown-flowering branches on the flowering phenology of the olive tree. The study was carried out from 2009 to 2012 at eight sites of Cornicabra olive cultivar in central Spain (Toledo province, Castilla-La Mancha region), at altitudes between 440 and 875 m above sea level, since most olive groves in central Spain are to be found in this altitude range. Flowering phenology was also compared in two olive groves located at the same site and elevation; one in a flat area and the other on a north-facing hillside. Results revealed a significant correlation between altitude and flowering start-date: for each 100 m increase in altitude, flowering started 2.5 days later. Analysis of individual flowering branches of the same tree showed that preflowering and flowering started several days later on north-facing compared to south-facing branches. Olive trees growing on a north-facing hillside started the preflowering stage with some delay with respect to those growing in flat areas. Finally, taking onset of flowering as the variable, a hierarchical cluster analysis enabled olive-groves to be classified by flowering sequence across an altitudinal gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera F, Ruiz L (2009) Study of the floral phenology of Olea europaea L. in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia 25(4):217–225

    Article  Google Scholar 

  • Aguilera F, Ruiz L (2012) Altitudinal fluctuations in the olive pollen emission: an approximation from the olive groves of the south-east Iberian Peninsula. Aerobiologia 28:403–411

    Article  Google Scholar 

  • Aguilera F, Ruiz L, Fornaciari M, Romano B, Galán C, Oteros J, Ben Dhiab A, Msallem M, Orlandi F (2013) Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometorol. doi:10.1007/s00484-013-0666-7

    Google Scholar 

  • Avolio E, Orlandi F, Bellecci C, Fornaciari M, Federico S (2012) Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy). Theor Appl Climatol 107(3–4):531–540

    Article  Google Scholar 

  • Bader MY, Ruijten JJA (2008) A topography-based model of forest cover at the alpine tree line in the tropical Andes. J Biogeogr 35:711–723

    Article  Google Scholar 

  • Barranco D, Rallo L (2000) Olive cultivars in Spain. HortTechnol 10:107–110

    Google Scholar 

  • Bonofiglio T, Orlandi F, Sgromo C, Romano B, Fornaciari M (2008) Influence of temperature and rainfall on timing of olive (Olea europaea) flowering in southern Italy. N Z J Crop Hortic 36:59–69

    Article  Google Scholar 

  • Bonofiglio T, Orlandi F, Sgromo C, Romano B, Fornaciari M (2009) Evidences of olive pollination date variations in relation to spring temperature trends. Aerobiologia 25:227–237

    Article  Google Scholar 

  • Camargo MGG, Souza RM, Reys P, Morellato LPC (2011) Effects of environmental conditions associated to the cardinal orientation on the reproductive phenology of the cerrado savanna tree Xylopia aromatica (Annonaceae). An Acad Bras Cienc 83(3):1007–1019

    Article  PubMed  Google Scholar 

  • Cesaraccio C, Canu A, Pellizzaro G, Sirca C (2006) A detailed description of flowering stages in olive tree in relation to side tree crown exposure. In: Proceedings of the 17th conference on biometeorology and aerobiology, 21–25 May, San Diego, California (EEUU)

  • Chmielewski FM (2003) Phenology and agriculture. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publ, Dordrecht, pp 505–522

    Chapter  Google Scholar 

  • Chytrý M, Tichý L (1998) Phenological mapping in a topographically complex landscape by combining field survey with an irradiation model. Appl Veg Sci 1:225–232

    Article  Google Scholar 

  • Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic Rev 31:155–229

    CAS  Google Scholar 

  • Cornelius C, Petermeier H, Estrella N, Menzel A (2011) A comparison of methods to estimate seasonal phenological development from BBCH scale recording. Int J Biometeorol 55:867–877

    Article  PubMed  Google Scholar 

  • Cufar K, De Luis M, Saz M, Crepinsek Z, Kajfez-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26:1091–1100

    Article  Google Scholar 

  • Davi H, Gillmann M, Ibanez T, Cailleret M, Bontemps A, Fady B, Lefèvre F (2011) Diversity of leaf unfolding dynamics among tree species: new insights from a study along an altitudinal gradient. Agric For Meteorol 151:1504–1513

    Article  Google Scholar 

  • De la Rosa R, Rallo L, Rapoport HF (2000) Olive floral bud growth and starch content during winter rest and spring budbreak. HortScience 35(7):1223–1227

    Google Scholar 

  • De Melo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ (2004) Modelling olive flowering date using chilling for dormancy release and thermal time. Agric For Meteorol 125(1–2):117–127

    Google Scholar 

  • Denney JO, McEachern GR, Griffiths JF (1985) Modeling the thermal adaptability of the olive (Olea europaea L.) in Texas. Agric For Meteorol 35:309–327

    Article  Google Scholar 

  • Díaz de la Guardia C, Alba F, Trigo MM, Galán C, Ruíz L, Sabariego S (2003) Aerobiological analysis of Olea europaea L. pollen in different localities of southern Spain. Grana 42:234–243

    Article  Google Scholar 

  • Emberlin J, Jaeger S, Dominguez-Vilches E, Galán C, Hodal L, Mandrioli P, Rantio A, Savage M, Spieksma FT, Barlett C (2000) Temporal and geographical variations in grass pollen seasons in areas of western Europe: an analysis of season dates at sites of the European pollen information system. Aerobiologia 16:373–379

    Article  Google Scholar 

  • Fernández-Escobar R, Moreno R, Sánchez-Zamora MA (2004) Nitrogen dynamics in the olive bearing shoot. HortScience 39(6):1406–1411

    Google Scholar 

  • Galán C, García-Mozo H, Cariñanos P, Alcázar P, Domínguez-Vilches E (2001) The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int J Biometeorol 45:8–12

    Article  PubMed  Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz-Valenzuela L, Díaz de la Guardia C, Trigo-Pérez M (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several places of Andalusia region and the effect of the expected future climate change. Int J Biometeorol 49(3):184–188

    Article  PubMed  Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Domínguez-Vilches E (2008) Modeling olive crop yield in Andalusia, Spain. Agron J 100(1):98–104

    Article  Google Scholar 

  • García-Mozo H (2011) The use of aerobiological data on agronomical studies. Ann Agric Environ Med 18:159–164

    Google Scholar 

  • García-Mozo H, Galán C, Vázquez L (2006) The reliability of geostatistic interpolation in olive field floral phenology. Aerobiologia 22:97–108

    Google Scholar 

  • García-Mozo H, Pérez-Badía R, Galán C (2008) Aerobiological and meteorological factors’ influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia 24:13–18

    Article  Google Scholar 

  • García-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agric For Meteorol 150:575–580

    Article  Google Scholar 

  • Gómez-Casero MT, Galán C, Domínguez-Vilches E (2007) Flowering phenology of mediterranean Quercus species in different locations (Córdoba, SW Iberian Peninsula). Acta Bot Malacitana 32:127–146

    Google Scholar 

  • Gucci R, Cantini C (2000) Pruning and training systems for modern olive growing. Csiro Publishing, Collingwood, VIC

    Google Scholar 

  • Hackett WP, Hartmann HT (1963) Morphological development of buds of olive as related to low temperature requirement for inflorescence formation. Bot Gaz 124:385–387

    Article  Google Scholar 

  • Hartmann HT, Whisler JE (1975) Flower production in olive as influenced by various chilling temperature regimes. J Am Soc Hortic Sci 100:670–674

    Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Méndez J, Aira MJ (2002) Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Int J Biometeorol 46:176–184

    Article  CAS  PubMed  Google Scholar 

  • Jochner SC, Sparks TH, Estrella N, Menzel A (2012) The influence of altitude and urbanization on trends and mean dates in phenology (1980–2009). Int J Biometeorol 56:387–394

    Article  PubMed  Google Scholar 

  • Kumral NA, Kovanci B, Akbudak B (2005) Pheromone trap catches of the olive moth, Prays oleae (Bern.) (Lep., Plutellidae) in relation to olive phenology and degree-day models. J Appl Entomol 129(7):375–381

    Article  CAS  Google Scholar 

  • Larcher W (2006) Altitudinal variation in flowering time of lilac (Syringa vulgaris L.) in the Alps in relation to temperatures. Oesterr Akad Wiss Math-Naturwiss Kl Sitzungsber Abt I 212:3–18

    Google Scholar 

  • Maxime C, Hendrik D (2011) Effects of climate on diameter growth of co-ocurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25:265–276

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler D, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli O, Peñuelas J, Pirinen P, Remisová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Ohashi Y, Kawakami H, Shigeta Y, Ikeda H, Yamamoto N (2012) The phenology of cherry blossom (Prunus yedoensis “Somei-yoshino”) and the geographic features contributing to its flowering. Int J Biometeorol. doi:10.1007/s00484-011-0496-4

    PubMed  Google Scholar 

  • Orlandi F, Fornaciari M, Romano B (2002) The use of phenological data to calculate chilling units in Olea europaea L. in relation to the onset of reproduction. Int J Biometeorol 46:2–8

    Article  CAS  PubMed  Google Scholar 

  • Orlandi F, García-Mozo H, Vazquéz L, Romano B, Domínguez E, Galán C, Fornaciari M (2004) Phenological olive chilling requirements in Umbria (Italy) and Andalusia (Spain). Plant Biosyst 138(2):111–116

    Article  Google Scholar 

  • Orlandi F, Ruga L, Romano B, Fornaciari M (2005a) An integrated use of aerobiological and phenological data to analyse flowering in olive groves. Grana 44:51–56

    Article  Google Scholar 

  • Orlandi F, Ruga L, Romano B, Fornaciari M (2005b) Olive flowering as an indicator of local climatic changes. Theor Appl Climatol 81:169–176

    Article  Google Scholar 

  • Orlandi F, Msallem M, Bonofiglio T, Ben Dhiab A, Sgromo C, Romano B, Fornaciari M (2010) Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia). Theor Appl Climatol 102:265–273

    Article  Google Scholar 

  • Pellerin M, Delestrade A, Mathieu G, Rigault O, Yoccoz NG (2012) Spring tree phenology in the Alps: effects of air temperature, altitude and local topography. Eur J For Res. doi:10.1007/s10342-012-0646-1

    Google Scholar 

  • Privé JP, Sullivan JA, Proctor JTA, Allen OB (1993) Climate influences vegetative and reproductive components of primocane-fruiting red raspberry cultivars. J Am Soc Hortic Sci 118(3):393–399

    Google Scholar 

  • Rallo L, Martín GC (1991) The role of chilling in releasing olive floral buds from dormancy. J Am Soc Hortic Sci 116(6):1058–1062

    Google Scholar 

  • Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Itinera Geobot 17:1–435

    Google Scholar 

  • Rivas-Martínez S, Díaz TE, Fernández-González F, Ízco J, Loidi J, Lousã M, Penas A (2002) Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobot 15:1–922

    Google Scholar 

  • Sáenz C, Gutiérrez M, Alcolado V (2003) Fenología, aerobiología y producción del olivar en Almodóvar del Campo (Castilla-La Mancha). An Jard Bot Madr 60(1):73–81

    Google Scholar 

  • Sanz-Cortés F, Martínez-Calvo J, Badenes ML, Bleiholder H, Hack H, Llácer G, Meier U (2002) Phenological growth stages of olive trees (Olea europaea). Ann Appl Biol 140:151–157

    Article  Google Scholar 

  • Shijo J, Reddy C, Pattanaik C, Sudhakar S (2008) Distribution of plant communities along climatic and topographic gradients in Mudumalai Wildlife Sanctuary (southern India). Biol Lett 45:29–41

    Google Scholar 

  • Spano D, Cesaraccio C, Duce P, Snyder RL (1999) Phenological stages of natural species and their use as climate indicators. Int J Biometeorol 42:124–133

    Article  Google Scholar 

  • Tang Z, Fang J (2006) Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agric For Meteorol 139:200–207

    Article  Google Scholar 

  • Vázquez FM (1998) Semillas del género Quercus L. (Biología, Ecología y Manejo). Servicio de Investigación y Desarrollo Tecnológico. Junta de Extremadura. Consejería de Agricultura y Comercio

  • Wang CT, Long RJ, Wang QJ, Ding LM, Wang MP (2007) Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai-Tibetan plateau. Aust J Bot 55:110–117

    Article  Google Scholar 

  • Wang Y, Li X, Dawadi B, Eckstein D, Liang E (2013) Phenological variation in height growth and needle unfolding of Smith fir along and altitudinal gradient on the southeastern Tibetan Plateau. Trees. doi:10.1007/s00468-012-0793-5

    Google Scholar 

  • Weinberger JH (1950) Chilling requirements of peach varieties. Proc Am Soc Hortic Sci 56:122–128

    Google Scholar 

  • Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-La Mancha for financial support provided through project POIC10-0302-2695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pérez-Badia.

Additional information

Communicated by J. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, J., Pérez-Badia, R. Effects of topography and crown-exposure on olive tree phenology. Trees 28, 449–459 (2014). https://doi.org/10.1007/s00468-013-0962-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0962-1

Keywords

Navigation