Skip to main content
Log in

Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Altitudinal variation in morphological, physiological and biochemical characteristics between two provenances of Abies faxoniana Rehd. et Wils. from contrasting elevations (3,500 and 2,850 m) was investigated by reciprocal transplantations in the eastern Qinghai-Tibetan Plateau. From each altitude, 54 seedlings were selected, of which 27 seedlings were simply transplanted at their original altitude, while the other 27 seedlings were reciprocally transplanted to another altitude. The results showed that there is evident altitudinal variation in growth, photosynthetic capacity and water use efficiency among A. faxoniana seedlings. Transplantation of seedlings to a lower altitude decreased the leaf pigment content, leaf N content and water use efficiency, but increased CE, P n, LMR and PNUE, consequently promoting NAR, the biomass accumulation and branchlet length increment. Besides, the increase in the C/N ratio reduced the risk of pathogen attack. Based on the substantial plasticity in the responses of the seedlings, we infer that the ongoing climate warming might facilitate the growth of A. faxoniana seedlings at high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angert AL, Schemske DW (2005) The evolution of species’ distributions: reciprocal transplants across the elevation ranges of Mimulus cardinalis and M. lewisii. Evolution 59:1671–1684

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Berenblum I, Chain E (1938) An improved method for the colorimetric determination of phosphate. Biochem J 32:295–298

    PubMed  CAS  Google Scholar 

  • Bresson CC, Vitasse Y, Kremer A, Delzon S (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol 31:1164–1174

    Article  PubMed  CAS  Google Scholar 

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61:2925–2941

    Article  PubMed  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8(4):e1000357. doi:10.1371/journal.pbio.1000357

    Article  PubMed  Google Scholar 

  • Chinese Soil Taxonomy Research Group ISSAS (1995) Chinese soil taxonomy (Revised Proposal) (in Chinese). China Agricultural Sci-Tech Press, Beijing

    Google Scholar 

  • Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek PM (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188–196

    Article  Google Scholar 

  • Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol 161:585–594

    Article  Google Scholar 

  • Jiang LG, Dong DF, Gan XQ, Wei SQ (2005) Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological N-use efficiency in three rice genotypes. Plant Soil 271:321–328

    Article  CAS  Google Scholar 

  • Johnston FM, Pickering CM (2004) Effect of altitude on resource allocation in the weed Achillea millefolium (yarrow, Asteraceae) in the Australian Alps. Aust J Bot 52(5):639–646

    Article  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life. Springer, Berlin

    Book  Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. Symp Soc Exp Biol 42:25–57

    PubMed  Google Scholar 

  • Körner C, Neumayer M, Menendez-Riedl SP, SmeetsScheel A (1989) Functional morphology of mountain plants. Elora 182:353–383

    Google Scholar 

  • Kramer GF, Norman HA, Krizek DT, Mireck RM (1991) Influence of UV-B radiation on polyamines, lipid-peroxidation and membrane-lipids in cucumber. Phytochemistry 30:2101–2108

    Article  CAS  Google Scholar 

  • Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446

    Article  PubMed  Google Scholar 

  • Li C, Liu S, Berninger F (2004) Picea seedlings show apparent acclimation to drought with increasing altitude in the eastern Himalaya. Trees Struct Funct 18:277–283

    Article  Google Scholar 

  • Li C, Xu G, Zang R, Korpelainen H, Berninger F (2007) Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiol 27:399–406

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wu C, Duan B, Korpelainen H, Luukkanen O (2009) Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal gradient. Trees Struct Funct 23:1109–1121

    Article  Google Scholar 

  • Lichtenthaler H (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu XD, Hou P (1998) Relation between the climate warming over the Qinghai-xizang Plateau and its surrounding areas in recent 30 years and elevation. Plateau Meteorol 17:245–249

    CAS  Google Scholar 

  • Livingston NJ, Guy RD, Sun ZJ, Ethier GJ (1999) The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell Environ 22:281–289

    Article  Google Scholar 

  • Marshall JD, Zhang J (1994) Carbon isotope discrimination and water-use efficiency in native plants of the North-Central Rockies. Ecology 75:1887–1895

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15(12):1409–1416

    Article  CAS  Google Scholar 

  • Mengel K (1991) Available nitrogen in soils and its determination by the Nmin-method and by electroultrafiltration (EUF). Fertilizer Res 28:251–262

    Article  Google Scholar 

  • Mitchell AK (1998) Acclimation of Pacific yew (Taxus brevifolia) foliage to sun and shade. Tree Physiol 18:749–775

    Article  PubMed  Google Scholar 

  • Morecroft MD, Woodward FI (1996) Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and delta C-13 of Alchemilla alpina. New Phytol 134:471–479

    Article  CAS  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15(12):684–692

    Article  PubMed  CAS  Google Scholar 

  • Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590

    Article  Google Scholar 

  • Olsson T, Leverenz JW (1994) Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve. Plant Cell Environ 17:701–710

    Article  Google Scholar 

  • Penuelas J, Boada M (2003) A global change—induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140

    Article  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthesis-use efficiency of species that differ inherently in species leaf area. Oecologia 116:26–37

    Article  Google Scholar 

  • Poorter H, Niinemets U (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Ran F, Wu C, Peng G, Korpelainen H, Li C (2010) Physiological differences in Rhododendron calophytum seedlings regenerated in mineral soil or on fallen dead wood of different decaying stages. Plant Soil 337:205–215

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597

    Article  PubMed  CAS  Google Scholar 

  • Richardson AD, Berlyn GP, Gregoire TG (2001) Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamea (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Amer J Bot 88:667–676

    Article  CAS  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen B, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–399

    Article  CAS  Google Scholar 

  • Shi SB, Zhu WY, Li HM, Zhou DW, Han F, Zhao XQ, Tang YH (2004) Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation. Environ Exp Bot 51:75–83

    Article  CAS  Google Scholar 

  • Shi Z, Liu S, Liu X, Centritto M (2006) Altitudinal variation in photosynthetic capacity, diffusional conductance and delta C-13 of butterfly bush (Buddleja davidii) plants growing at high elevations. Physiol Plant 128:722–731

    Article  CAS  Google Scholar 

  • Sims JR, Haby VA (1971) Simplified colorimetric determination of soil organic matter. Soil Sci 112:137–141

    Article  CAS  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  PubMed  CAS  Google Scholar 

  • Tan CP, Yang JP, Mi R (2010) Analysis of the climatic change characteristics in the southern Tibetan Plateau from 1971 to 2007. J Glac Geoc 32:1111–1120

    Google Scholar 

  • Taylor AH, Jiang SW, Zhao LJ, Liang CP, Miao CJ, Huang JY (2006) Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China. For Ecol Manag 223:303–317

    Article  Google Scholar 

  • Tingey DT, McKane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Henry LE (2003) Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biol 9:1038–1050

    Article  Google Scholar 

  • Wang KY, Yang WQ, Song GY, Hu TX (2004) Processes of subalpine forest ecosystems in west of Sichuan. Sichuan Publishing house of Sci -Tec, Chengdu

    Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10:1724–1736

    Article  Google Scholar 

  • Wilson SD (1994) Biomass allocation near an alpine treeline: causes and consequences for diversity. Ecoscience 1:185–189

    Google Scholar 

  • Woodward FI (1986) Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70:580–586

    Article  Google Scholar 

  • Wu SH, Yin YH, Zheng D, Yang QY (2005) Climate changes in Tibetan Plateau during the last three decades. Acta Geogr Sin 60:3–11

    Google Scholar 

  • Wu C, Peng G, Zhang Y, Xu X, Korpelainen H, Berninger F, Li C (2011) Physiological responses of Abies faxoniana seedlings to different non-growing seasonal temperatures as revealed by reciprocal transplantations at two contrasting altitudes. Can J For Res 41:599–607

    Article  Google Scholar 

  • Xu X, Yang F, Xiao X, Zhang S, Korpelainen H, Li C (2008) Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant Cell Environ 31:850–860

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wang GX, Yang LD, Guo JY (2013) Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in eastern Tibetan Plateau. J Plant Growth Regul 32:298–306

    Google Scholar 

  • Yao TD, Liu XD, Wang NL, Shi YF (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chin Sci Bull 45:1236–1243

    Article  Google Scholar 

  • Yao XQ, Liu Q (2009) The effects of enhanced ultraviolet-B and nitrogen supply on growth, photosynthesis and nutrient status of Abies faxoniana seedlings. Acta Physiol Plant 31:523–529

    Google Scholar 

  • Zafar ZU, Athar HUR, Ashraf M (2010) Responses of two cotton (Gossypium hirsutum L.) cultivars differing in resistance to leaf curl virus disease to nitrogen nutrition. Pak J Bot 42(3):2085–2094

    CAS  Google Scholar 

  • Zhang SB, Hu H, Xu K, Li ZR (2006) Photosynthetic performances of five Cypripedium species after transplanting. Photosynthetica 44(3):425–432

    Article  CAS  Google Scholar 

  • Zhao H, Li Y, Duan B, Korpelainen H, Li C (2009) Sex-related adaptive responses of Populus cathayana to photoperiod transitions. Plant Cell Environ 32:1401–1411

    Article  PubMed  CAS  Google Scholar 

  • Zhou NF, Qin NS, TU QP, Li DL (2005) Analyses on regional characteristics of temperature changes over Qinghai-Xizang Plateau in recent 50 years. Plateau Meteorol 24:345–349

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Natural Science Foundation of China (31170373) and the Youth Talent Team Program of the Institute of Mountain Hazards and Environment, CAS (SDSQB-2012-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Li.

Additional information

Communicated by G. Wieser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ran, F., Zhang, X., Zhang, Y. et al. Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations. Trees 27, 1405–1416 (2013). https://doi.org/10.1007/s00468-013-0888-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0888-7

Keywords

Navigation