Skip to main content
Log in

Stigmasterol-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The treatment of in vitro-grown shoots of the marubakaido apple rootstock with 0.5 μg stigmasterol, an end-pathway sterol of the bifurcated sterol biosynthetic pathway, in 5 μL acetone per shoot led to a significant (p ≤ 0.05) enhancement of the multiplication rate (MR) from 5.1 (shoots treated with 5 μL acetone only) to 10.3. This increase in the MR was due to a significant enhancement of the number of newly formed main shoots suitable for micropropagation purposes (measuring at least 15 mm in length) from 2.6 to 3.3 per explant, and of the number of newly formed primary lateral shoots from 2.2 to 5.0 per explant as well. Shoots treated with stigmasterol at 0.5 and 2.5 μg per shoot presented primary and secondary lateral shoots with significantly (p ≤ 0.05) longer length compared to shoots treated with acetone only. These results provide an insight into the morphological responses of the marubakaido rootstock shoots to the treatment with an end-pathway sterol. To the best of my knowledge, this is the first report on the successful use of stigmasterol for the improvement of a micropropagation system. These results also demonstrate that stigmasterol-induced shoot proliferation is a low-cost and effective way to enhance the in vitro MR for the apple rootstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El-Wahed MSA, Gamal El-Din KM (2004) Stimulation of growth, flowering, biochemical constituents and essential oil of chamomile plant (Chamomilla recutita L., Rausch) with spermidine and stigmasterol application. Bulg J Plant Physiol 30:89–102

    CAS  Google Scholar 

  • Arnqvist L, Persson M, Jonsson L, Dutta PC, Sitbon F (2008) Overexpression of CYP710A1 and CYP710A4 in transgenic Arabidopsis plants increases the level of stigmasterol at the expense of sitosterol. Planta 227:309–317

    Article  PubMed  CAS  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219–230

    Article  PubMed  CAS  Google Scholar 

  • Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 4:361–366

    Article  PubMed  CAS  Google Scholar 

  • Cooke DT, Burden RS, James CS, Seco T, Sierra B (1994) Influence of sterols on plasma membrane proton-pumping ATPase activity and membrane fluidity in oat shoots. Plant Physiol Biochem 32:769–773

    CAS  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • De-Eknamkul W, Potduang B (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    Article  PubMed  CAS  Google Scholar 

  • Douglas TJ, Paleg LG (1981) Inhibition of sterol biosynthesis and stem elongation of tobacco seedlings induced by some hypocholesterolemic agents. J Exp Bot 32:59–68

    Article  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Goad LJ (1990) Application of sterol synthesis inhibitors to investigate the sterol requirements of protozoa and plants. Biochem Soc Trans 18:63–65

    PubMed  CAS  Google Scholar 

  • Grandmougin-Ferjani A, Schuler-Muller I, Hartmann M-A (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol 113:163–174

    PubMed  CAS  Google Scholar 

  • Hartmann M-A (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  • Haughan PA, Lenton JR, Goad LJ (1987) Paclobutrazol inhibition of sterol biosynthesis in a cell suspension culture and evidence of an essential role for 24-ethylsterol in plant cell division. Biochem Biophys Res Commun 146:510–516

    Article  PubMed  CAS  Google Scholar 

  • He J-X, Fujioka S, Li T-C, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang J-C (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131:1258–1269

    Article  PubMed  CAS  Google Scholar 

  • Helmkamp G, Bonner J (1953) Some relationships of sterols to plant growth. Plant Physiol 28:428–436

    Article  PubMed  CAS  Google Scholar 

  • Jang J-C, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev 14:1485–1497

    PubMed  CAS  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557

    Article  PubMed  CAS  Google Scholar 

  • Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, Wadano A, Sakata K, Ohta D (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell 18:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narita JO, Gruissem W (1989) Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell 1:181–190

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea. Plant Physiol 119:1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Jager CE, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya Y, Takatsuto S, Fujioka S, Smith JJ, Kerckhoffs LHJ, Reid JB, Yokota T (2004) Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiol 135:2220–2229

    Article  PubMed  CAS  Google Scholar 

  • Nunes JCO, Barpp A, Silva FC, Pedrotti EL (1999) Micropropagation of rootstocks “marubakaido” (Malus prunifolia) through meristem culture. Rev Bras Frutic 21:191–195

    Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Schaefer S, Medeiro AS, Ramirez JÁ, Galagovsky LR, Pereira-Netto AB (2002) Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Rep 20:1093–1097

    Article  CAS  Google Scholar 

  • Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jürgens G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14:1471–1484

    PubMed  CAS  Google Scholar 

  • van Sandt VST, Guisez Y, Verbelen J-P, Vissenberg K (2006) Analysis of a xyloglucan endotransglycosylase/hydrolase (XTH) from the lycopodiophyte Selaginella kraussiana suggests that XTH sequence characteristics and function are highly conserved during the evolution of vascular plants. J Exp Bot 57:2909–2922

    Article  PubMed  Google Scholar 

  • Zanol GC, de Fortes GRL, da Silva JB, Campos ÂD, Centellas AQ, Muller NT, Gottinari RA (1997) Influence of the darkness and the indolbutyric acid on in vitro rooting and peroxidase activity of the rootstock apple marubakaido. Rev Bras Agroc 3:23–30

    Google Scholar 

Download references

Acknowledgments

The author thanks the Brazilian National Research and Development Council (CNPq), Brazil, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Pereira-Netto.

Additional information

Communicated by R. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira-Netto, A.B. Stigmasterol-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock. Trees 26, 581–586 (2012). https://doi.org/10.1007/s00468-011-0621-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0621-3

Keywords

Navigation