Skip to main content
Log in

Low level expression of prokaryotic tzs gene enhances growth performance of transgenic poplars

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

We modulated the level of a hormone gene expression in poplars using either 35S promoter (p35S) of cauliflower mosaic virus (CaMV) or aux promoter (pAUX) of A. rhizogenes. The transgenic poplars (Populus alba × P. tremula var. glandulosa), in which the bacterial trans-zeatin secretion (tzs) gene was attached either to the 35S promoter or to the aux promoter, were compared for their performance in tissue culture as well as in nursery. Northern blot analysis of total RNA probed with tzs coding region showed that the total tzs mRNA expression by p35S was approximately 200–300-fold higher than that driven by pAUX. In contrast, the cellular zeatin content of p35S-tzs transgenic poplars was merely 13-fold of those found in pAUX-tzs plants. Due to different levels of cellular zeatin levels, the two types of transgenic poplars showed different morphogenetic as well as growth responses. The p35S-tzs transgenic plants showed morphological characteristics typical of those treated with cytokinin in culture. These include multiple axillary shoot formation, thick stems, narrow leaves and absence of roots. In contrast, the pAUX-tzs plants had slightly higher cellular cytokinin levels than did control plants and showed a lower degree of cytokinin-related phenotypes, including a few axillary shoots in root-inducing media. Since p35S-tzs did not develop roots, only pAUX-tzs transgenic poplars could be transplanted to the nursery where they resumed a close-to-normal growth. Nevertheless, pAUX-tzs plants transferred to the nursery developed cytokinin-related phenotypes, including greater number of shoots, smaller leaves and slightly retarded growth in height, but with a high total biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ainley WM, McNeil KJ, Hill JW, Lingle WL, Simpson RB, Brenner MI, Nagao RT, Key JL (1993) Regulatable endogenous production of cytokinin upto ‘toxic’ levels in transgenic plants and plant tissues. Plant Mol Biol 22:13–23. doi:10.1007/BF00038992

    Article  PubMed  CAS  Google Scholar 

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998. doi:10.1073/pnas.81.19.5994

    Article  PubMed  CAS  Google Scholar 

  • Akiyoshi DE, Regier DA, Jen G, Gordon MP (1985) Cloning and nucleotide sequence of the tzs gene from Agrobacteria tumefaciens strain T37. Nucleic Acids Res 13:2773–2788. doi:10.1093/nar/13.8.2773

    Article  PubMed  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of cytokinin-biosynthesis gene. Proc Natl Acad Sci USA 81:4776–4800. doi:10.1073/pnas.81.15.4776

    Article  PubMed  CAS  Google Scholar 

  • Beaty JS, Powell GK, Lica L, Regier DA, MacDonald EMS, Hommes NG, Morris RO (1986) Tzs a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with trans-zeatin biosynthesis. Mol Gen Genet 203:274–280. doi:10.1007/BF00333966

    Article  CAS  Google Scholar 

  • Becker D (1990) Binary vectors, which allow the exchange of plant selectable marker and reporter genes. Nucleic Acids Res 18:203. doi:10.1093/nar/18.1.203

    Article  PubMed  CAS  Google Scholar 

  • Cappiello PE, Kling GJ (1990) Determination of zeatin and zeatin riboside in plant tissue by solid-phase extraction and ion-exchange chromatography. J Chromatogr A 504:197–201. doi:10.1016/S0021-9673(01)89526-1

    Article  CAS  Google Scholar 

  • Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183. doi:10.1104/pp.103.023945

    Article  PubMed  CAS  Google Scholar 

  • Choi YI, Noh EW, Han MS, Yi YS (2001) Estimation of cellular damages caused by paraquat and lead using a cell culture system. J Plant Biotechnol 3:83–88

    Google Scholar 

  • Choi YI, Noh EW, Lee HS, Han MS, Lee JS, Choi KS (2005) An efficient and novel plant-selectable marker based on organomercurial resistance. J Plant Biol 48:351–355

    Article  CAS  Google Scholar 

  • Clark DG, Dervinis C, Barret JE, Klee H, Jones M (2004) Drought-induced leaf senescence and horticultural performance of transgenic PSAG12-i IPT petunias. J Am Hortic Sci 129:93–99

    CAS  Google Scholar 

  • Curtis IS, He C, Jordi WJRM, Davelaar E, Power JB, De Laat AMM, Davey MR (1999) Promoter deletions are essential for transformation of lettuce by the T-cyt gene: the phenotypes of transgenic plants. Annal Bot 83:559–567. doi:10.1006/anbo.1999.0859

    Article  CAS  Google Scholar 

  • Eklof S, Astot C, Moritz T, Blackwell J, Olsson O, Sandberg G (1996) Cytokinin metabolites and gradients in wild-type and transgenic tobacco with moderate cytokinin over-production. Physiol Plant 98:333–344. doi:10.1034/j.1399-3054.1996.980215.x

    Article  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788. doi:10.1038/77355

    Article  PubMed  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Hassig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of poplars. Mol Gen Genet 206:192–199. doi:10.1007/BF00333574

    Article  CAS  Google Scholar 

  • Flauding M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121. doi:10.1023/A:1018421620040

    Article  Google Scholar 

  • Fu Y, Ding Y, Liu X, Sun C, Cao S, Wang D, He S, Wang X, Li L, Tian W (1998) Rice transformation with a senescence inhibition chimeric gene. Chin Sc Bull 43:1810–1815

    Article  CAS  Google Scholar 

  • Gaudin V, Jouanin L (1995) Expression of Agrobacterium rhizogenes auxin biosynthetic genes in transgenic tobacco plants. Plant Mol Biol 28:123–136. doi:10.1007/BF00042044

    Article  PubMed  CAS  Google Scholar 

  • Grünwald S, Deutsch F, Eckstein D, Fladung M (2000) Wood formation in rolC transgenic aspen trees. Trees (Berl) 14:297–304

    Google Scholar 

  • Hertzberg M, Aspeborg H, Schraderr J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlen M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P (2001) A transcriptional road map to wood formation. Proc Natl Acad Sci USA 98:14732–14737. doi:10.1073/pnas.261293398

    Article  PubMed  CAS  Google Scholar 

  • Houba-Hérin N, Pethe C, d’Alayer J, Laloue M (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626. doi:10.1046/j.1365-313X.1999.00408.x

    Article  PubMed  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812. doi:10.1038/11758

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MV (1987) GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jianchun G, Hu X, Duan R (2005) Interactive effects of cytokinins, light, and sucrose on the phenotypes and the syntheses of anthocyanins and lignins in cytokinin overproducing transgenic Arabidopsis. J Plant Growth Regul 24:93–101. doi:10.1007/s00344-005-0005-2

    Article  CAS  Google Scholar 

  • Kaminek M (1992) Progress in cytokinin research. TIB 10:159–164

    CAS  Google Scholar 

  • Krall L, Raschke M, Zenk MH, Baron C (2002) The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5′-phosphate from 4-hydroxy-3-methyl-2-(E)- butenyl diphosphate and AMP. FEBS Lett 527:315–318. doi:10.1016/S0014-5793(02)03258-1

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395. doi:10.1016/0012-1606(92)90123-X

    Article  PubMed  CAS  Google Scholar 

  • Lloyd G, McCown BH (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Martineau B, Houck CM, Shoohy RE, Hiatt WR (1994) Fruit specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defence-related gene expression in leaves. Plant J 5:11–19. doi:10.1046/j.1365-313X.1994.5010011.x

    Article  CAS  Google Scholar 

  • McCabe MS, Garratt LC, Schepers F, Jordi WLRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516. doi:10.1104/pp.010244

    Article  PubMed  CAS  Google Scholar 

  • McGaw BA, Burch LR (1995) Cytokinin biosynthesis and metabolism. In: Davies (ed) Physiology, biochemistry and molecular biology. Plant hormones, 2nd edn, Kluwer Academic Publishers, Dordrecht, pp 98–117

  • Medford J, Horgan R, El-Sawi Z, Klee HJ (1989) Alteration of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    Article  PubMed  CAS  Google Scholar 

  • Morris RO, Bilyeu KD, Laskey JG, Cheikh N (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333. doi:10.1006/bbrc.1999.0199

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nguyen KHT, Kane EJ, Dix PJ (1998) Hormonal regulation of senescence in cauliflower (Brassica oleracea var. Botrytis) (abstract no. 96). In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century, IX International Congress Plant Tissue Culture. Kluwer Academic Press, Dordrecht, p 164

  • Nilsson O, Morittz T, Sundberg B, Sandberg C, Isson Olof O (1997) Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 96:493–502

    Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612. doi:10.1038/nbt0602-607

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A-M, Goffner D (2002) Laccase down regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155. doi:10.1104/pp.010988

    Article  PubMed  CAS  Google Scholar 

  • Roeckel P, Oancia T, Drevet JR (1998) Phenotype alteration and component analysis of seed yield in transgenic Brassica napus plants expressing the tzs gene. Physiol Plant 102:243–249. doi:10.1034/j.1399-3054.1998.1020212.x

    Article  CAS  Google Scholar 

  • Scott IM, Browning G, Eagles J (1980) Ribosylzeatin and zeatin in tobacco crown gall tissues. Planta 147:269–273. doi:10.1007/BF00379831

    Article  CAS  Google Scholar 

  • Smart CM, Scofield SR, Bevan MW, Dyer TA (1991) Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3:647–656

    Article  PubMed  CAS  Google Scholar 

  • Smigocki AC, Owens LD (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85:5131–5135. doi:10.1073/pnas.85.14.5131

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments. J Mol Biol 98:503–517. doi:10.1016/S0022-2836(75)80083-0

    Article  PubMed  CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri T, Boerian W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335. doi:10.1073/pnas.95.22.13330

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Rost TL, Matthews MA (2006) Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae). Am J Bot 93:1567–1576. doi:10.3732/ajb.93.11.1567

    Article  CAS  Google Scholar 

  • Taylor G (2002) Populus: Arabidopsis for forestry: do we need a model tree? Ann Bot (Lond) 90:681–689. doi:10.1093/aob/mcf255

    Article  CAS  Google Scholar 

  • Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid biosynthetic genes. Plant Physiol 109:1179–1189

    PubMed  CAS  Google Scholar 

  • von Schwartzenberg K, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14:27–35

    Google Scholar 

  • Weigel D, Nilsson P (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 6549:495–500. doi:10.1038/377495a0

    Article  Google Scholar 

  • Yeung EC (1999) The use of histology in the study of plant tissue culture systems—some practical comments. In Vitro Cell Dev Biol 35:137–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Woon Noh.

Additional information

Communicated by R. Hampp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.I., Noh, E.W. & Choi, K.S. Low level expression of prokaryotic tzs gene enhances growth performance of transgenic poplars. Trees 23, 741–750 (2009). https://doi.org/10.1007/s00468-009-0316-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0316-1

Keywords

Navigation