Skip to main content
Log in

Anatomical and biochemical changes in the composition of developing seed coats of annatto (Bixa orellana L.)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amaral LIV, Pereira MFA, Cortelazzo AL (1995) Quebra da dormência em sementes de Bixa orellana. Braz J Plant Physiol 7:151–157

    Google Scholar 

  • Amaral LIV, Pereira MFA, Cortelazzo AL (2000) Germinação em sementes em desenvolvimento de Bixa orellana. Braz J Plant Physiol 12:273–285

    Google Scholar 

  • Bevilacqua LR, Fossati F, Dondero G (1987) “Callose” in the impermeable seed coat of Sesbania punicea. Ann Bot (Lond) 59:335–341

    Google Scholar 

  • Bhalla PL, Slattery HD (1984) Callose deposits make clover seed as impermeable to water. Ann Bot (Lond) 53:125–128

    CAS  Google Scholar 

  • Brant RE, McKee GW, Cleveland RW (1971) Effect of chemical and physical treatments on hard seeds of penngift crown vetch. Crop Sci 11:1–6

    CAS  Google Scholar 

  • Cao Y, Shen D, Lu Y, Huang Y (2006) A Raman scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann Bot (Lond) 97:1091–1094. doi:10.1093/aob/mcl059

    Article  CAS  Google Scholar 

  • Carpita NC (1983) Hemicellulosic polymers of cell walls of Zea coleoptiles. Plant Physiol 72:515–521

    Article  PubMed  CAS  Google Scholar 

  • Chae SH, Yoneyama K, Takeuchi Y, Joel DM (2004) Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiol Plant 120:328–337. doi:10.1111/j.0031-9317.2004.0243.x

    Article  PubMed  CAS  Google Scholar 

  • Chopra RN, Kaur H (1965) Embryology of Bixa orellana Linn. Phytomorphology 15:211–215

    Google Scholar 

  • Cortelazzo AL (1992) Detecção e quantificação do amido em cotilédones de Canavalia ensiformis e Canavalia gladiata durante o desenvolvimento inicial da planta. Braz J Bot 15:157–162

    CAS  Google Scholar 

  • Cortelazzo AL, Vidal BC (1991) Soybean seed proteins: detection in situ and mobilization during germination. Braz J Bot 14:27–34

    CAS  Google Scholar 

  • Egley GH, Rex N, Paul J, Lax AR (1986) Seed coat imposed dormancy: histochemistry of the region controlling onset of water entry into Sida spinosa seeds. Physiol Plant 67:320–327. doi:10.1111/j.1399-3054.1986.tb02464.x

    Article  Google Scholar 

  • Fry SC (1988) The growing plant cell wall. chemical and metabolic analysis. Longman Scientific and Technology, Essex, UK

    Google Scholar 

  • Grondahl P, Teleman A, Gatenholm M (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydr Polym 52:359–366. doi:10.1016/S0144-8617(03)00014-6

    Article  CAS  Google Scholar 

  • Harris WM (1987) Comparative ultrastructure of developing seed coats of “hard-seeded” and “soft-seeded” varieties of soybean Glycine max (L.) Merr. Bot Gaz 148:324–331. doi:10.1086/337660

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGaw, New York

    Google Scholar 

  • Kiok B (1978) Estudos de flavonas, flavonóides e ácido fenólico em urucum (Bixa orellana). Acta Amazon 8:109–110

    Google Scholar 

  • Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316. doi:10.1023/A:1027302526861

    Article  Google Scholar 

  • Lison L (1960) Histochemie et citochemie animales. Principles et methodes. Gauthier-Villars, Paris

    Google Scholar 

  • MacRae JC (1971) Quantitative measurement of starch in very small amounts of leaf tissue. Planta 96:101–108. doi:10.1007/BF00386360

    Article  CAS  Google Scholar 

  • Marbach I, Mayer AM (1974) Permeability of seed coats to water as related to drying conditions and metabolism of phenols. Plant Physiol 54:817–820

    Article  PubMed  CAS  Google Scholar 

  • Mercadante AZ, Steck A, Pfande H (1999) Three minor carotenoids from annatto (Bixa orellana) seeds. Phytochemistry 52:135–139. doi:10.1016/S0031-9422(98)00761-4

    Article  CAS  Google Scholar 

  • Mühlethaler K (1967) Ultrastructure and formation of plant cell walls. Annu Rev Plant Physiol 18:1–24. doi:10.1146/annurev.pp.18.060167.000245

    Article  Google Scholar 

  • Mullin WJ, Xu W (2001) Study of soybean seed coat components and their relationship to water absorption. J Agric Food Chem 49:5331–5335. doi:10.1021/jf010303s

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530. doi:10.1016/S0981-9428(02)01404-3

    Article  CAS  Google Scholar 

  • Rangaswamy NS, Nandakumar L (1985) Correlative studies on seed coat structure, chemical composition, and impermeability in the legume Rhynchosia minima. Bot Gaz 146:501–509. doi:10.1086/337555

    Article  CAS  Google Scholar 

  • Reith JF (1971) Properties of bixin and norbixin and the composition of annatto extracts. J Food Sci 36:861–864. doi:10.1111/j.1365-2621.1971.tb15545.x

    Article  CAS  Google Scholar 

  • Rolston MP (1978) Water impermeable seed dormancy. Bot Rev 44:365–396

    Article  CAS  Google Scholar 

  • Saeman JF, Buhl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. Ind Eng Chem 17:35–37. doi:10.1021/i560137a008

    Article  CAS  Google Scholar 

  • Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Slattery HD, Atwell BJ, Kuo J (1982) Relationship between color, phenolic content and impermeability in the seed coat of various Trifolium subterraneum L genotypes. Ann Bot (Lond) 50:373–378

    Google Scholar 

  • Slayter EM (1970) Optical methods in biology. Wiley-Interscience, New York

    Google Scholar 

  • Stabell E, Upadhyaya MK, Ellis BE (1996) Development of seed coat imposed dormancy during seed maturation in Cynoglossum officinale. Physiol Plant 97:28–34. doi:10.1111/j.1399-3054.1996.tb00474.x

    Article  CAS  Google Scholar 

  • Updegraff D (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424. doi:10.1016/S0003-2697(69)80009-6

    Article  PubMed  CAS  Google Scholar 

  • Vidal (1987) Métodos em biologia celular. In: Vidal BC, Mello MLS (eds) Biologia celular. Atheneu, Rio de Janerio

  • Windsor BJ, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J 22:483–493. doi:10.1046/j.1365-313x.2000.00756.x

    Article  PubMed  CAS  Google Scholar 

  • Yoshizama N, Inami A, Miyake F, Yokota S (2000) Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol 34:183–196. doi:10.1007/s002260000046

    Article  Google Scholar 

  • Zickler GA, Wagermaier W, Funari SS, Burghammer M, Paris O (2007) In situ X-ray diffraction investigation of thermal decomposition of wood cellulose. J Anal Appl Pyrolysis 80:134–140. doi:10.1016/j.jaap.2007.01.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lourdes IV Amaral was supported by a scholarship from Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) and by the Brazilian Council of Research (CNPq). The authors also thank Davi Rossatto (University of Brasilia) for the help in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes I. V. Amaral.

Additional information

Communicated by P. von Aderkas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, L.I.V., Cortelazzo, Â.L., Buckeridge, M.S. et al. Anatomical and biochemical changes in the composition of developing seed coats of annatto (Bixa orellana L.). Trees 23, 287–293 (2009). https://doi.org/10.1007/s00468-008-0276-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0276-x

Keywords

Navigation