Skip to main content
Log in

Modelling foliage characteristics in 3D tree crowns: influence on light interception and leaf irradiance

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Because of the difficulty and time involved in making exhaustive measurements of the geometric parameters of large tree crowns, simplifying hypotheses are often used in 3D virtual plant modelling, but the effects on the radiation balance of each approximation are rarely assessed. Three hybrid walnut trees aged 7–9 years were digitized to analyse the effect of the crown geometric variables on light capture. The six studied variables were: (1) leaf area, (2) number of leaves per annual shoot, (3) position of leaves, (4) orientation of leaves, (5) leaflet inclination, and (6) lamina shape. For each variable, a sensitivity analysis compared a reference, based on observed values, with scenarios consisting of simplifying hypotheses. The total incident light intercepted during a bright day and the distributions of leaf irradiance were calculated using the Archimed radiative transfer model. Since some of the crown parameters were generated stochastically, the radiation simulations were repeated until results stabilised. Simplified models can be used to calculate with satisfactory results individual leaf area and number of leaves per shoot. Conversely, differentiating statistical distributions of individual leaf area between short and long shoots is more difficult and may generate errors up to 30%. Leaf clumping is a determining factor and requires correct grouping of leaves around the annual shoots bearing them. The effect of position of leaves along the shoot is less than 2%. Simple statistical distributions are adequate for representing leaf angle. Finally, the effect of specific leaf geometry is very important, but it can be approached using a limited number of representative leaf shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C1:

Crown number 1 (614 leaves)

C2:

Crown number 2 (2 397 leaves)

C3:

Crown number 3 (4 943 leaves)

x i , y i , z i :

Spatial coordinates of leaf i

A ij :

Leaf surface area of the leaf i on annual shoot j (cm2)

L j :

Length of the annual shoot j (cm)

R ij :

Relative rank of node i on shoot j

N j :

Number of leaves on the annual shoot j

D j :

Basal diameter of the annual shoot j (cm)

Pni,j :

Relative position of the ith node on the annual shoot j

N leaflet :

Number of leaflets on a leaf

LAD:

Leaf area density (m2 m−3)

E i :

Leaf irradiance (μmols m−2 s−1) for leaf number i

IPAR :

Total photosynthetic active radiation intercepted by a crown (mols s−1)

rPPFD:

Relative photosynthetic photon flux density distribution (%)

\( \overline{{{\text{STAR}}}} \) :

Silhouette to total area ratio integrated on the sky vault

ψ:

Azimuth angle of average leaf plane (degrees)

θ:

Elevation angle of average leaf plane (degrees)

ϕ:

Roll angle of average leaf plane (degrees)

α:

Leaf normal inclination (degrees)

ε i :

Light interception efficiency of a crown

λleaflet :

Angle between two leaflets with the same point of attachment (degrees)

References

  • Adam B (1999) POL95: software to drive a Polhemus Fastrak 3 SPACE 3D digitiser. Version 1.0. UMR PIAF INRA-UBP, Clermont-Ferrand, FR

  • Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1997) Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Can J Bot 76:1180–1187

    Article  Google Scholar 

  • Balandier P, Lacointe A, Le Roux X, Sinoquet H, Cruiziat P, Le Dizès S (2000) SIMWAL: a structural–functional model simulating single walnut tree growth in response to climate and pruning. Ann For Sci 57:571–585

    Article  Google Scholar 

  • Barczi JF, de Reffye P, Caraglio Y (1997) Essai sur l’identification et la mise en ouvre des paramètres nécessaires à la simulation d’une architecture végétale. In: Bouchon J, de Reffye P, Barthélémy D (eds) Modélisation et simulation de l’architecture des végétaux. Science Update. INRA, Versailles, FR, pp 205–254

    Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed  Google Scholar 

  • Boudon F, Nouguier C, Godin C (2001) GEOM module manual. I. User guide. CIRAD, Montpellier, FR

    Google Scholar 

  • Brown PL, Doley D, Keenan RJ (2000) Estimating tree crown dimensions using digital analysis of vertical photographs. Agric For Meteorol 100:199–212

    Article  Google Scholar 

  • Casella E, Sinoquet H (2003) A method for describing the canopy architecture of coppice poplar with allometric relationships. Tree Physiol 23:1153–1169

    PubMed  Google Scholar 

  • Chelle M (2005) Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for? New Phytol 166:781–790

    Article  PubMed  Google Scholar 

  • Chenu K, Franck N, Dauzat J, Barczi JF, Rey H, Lecoeur J (2005) Integrated responses of rosette organogenesis, morphogenesis and architecture to reduced incident light in Arabidopsis thaliana results in higher efficiency of light interception. Funct Plant Biol 32:1123–1134

    Article  Google Scholar 

  • Dauzat J, Eroy MN (1997) Simulating light regime and intercrop yields in a coconut based farming system. Eur J Agron 7:63–74

    Article  Google Scholar 

  • Dauzat J, Rapidel B, Berger A (2001) Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica. Agric Forest Meteorol 109:143–160

    Article  Google Scholar 

  • de Castro F, Fetcher N (1998) Three dimensional model of the interception of light by a canopy. Agric Forest Meteorol 90:215–233

    Article  Google Scholar 

  • de Castro F, Fetcher N (1999) The effect of leaf clustering in the interception of light in vegetal canopies : theoretical considerations. Ecol Model 116:125–134

    Article  Google Scholar 

  • de Wit CT (1965) Photosynthesis of leaf canopies. Agric Res Rep 663, Wageningen, NL

  • den Dulk JA (1989) The interpretation of remote sensing, a feasibility study. WAU dissertation 1265, Wageningen, NL

  • Eschenbach C (2005) Emergent properties modelled with the functional structural tree growth model ALMIS: Computer experiments on resource gain and use. Ecol Model 186:470–488

    Article  Google Scholar 

  • Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525

    Article  Google Scholar 

  • Farque L, Sinoquet H, Colin F (2001) Canopy structure and light interception in Quercus petraea seedlings in relation to light regime and plant density. Tree Physiol 21:1257–1267

    PubMed  CAS  Google Scholar 

  • Fleck S, Niinemets U, Cescatti A, Tenhunen JD (2003) Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis. Tree Physiol 23:577–589

    PubMed  Google Scholar 

  • Fraser GW, Canham CD, Lertzman KP (1999) Gap Light Analyser (GLA), Version 2.0: imaging software to extract canopy structure and gap light indices from true-colour fisheye photographs, Users manual and program documentation. Simon Fraser University, Burnaby, BC, and Inst Ecosyst Stud, Millbrook, NY, USA

  • Giuliani R, Magnanini E, Fracassa C, Nerozzi F (2000) Ground monitoring the light-shadow windows of a tree canopy to yield canopy light interception and morphological traits. Plant Cell Environ 23:783–796

    Article  Google Scholar 

  • Giuliani R, Magnanini E, Nerozzi F, Muzzi E, Sinoquet H (2005) Canopy probabilistic reconstruction inferred from Monte Carlo point-intercept leaf sampling. Agric Forest Meteorol 128:17–32

    Article  Google Scholar 

  • Godin C, Caraglio Y (1998) A multiscale model of plant topological structures. J Theor Biol 191:1–46

    Article  PubMed  Google Scholar 

  • Godin C, Costes E, Caraglio Y (1997) Exploring plant topological structure with the AMAPmod software: an outline. Silva Fenn 31:355–366

    Google Scholar 

  • Godin C, Costes E, Sinoquet H (1999) A method for describing plant architecture which integrates topology and geometry. Ann Bot 84:343–357

    Article  Google Scholar 

  • Godin C, Sinoquet H (2005) Functional–structural plant modelling. New Phytol 166:705–708

    Article  PubMed  Google Scholar 

  • Green S, McNaughton K, Wünsche JN, Clothier B (2003) Modeling light interception and transpiration of Apple tree canopies. Agron J 95:1380–1387

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, Berlin

    Google Scholar 

  • Hanan J (1997) Virtual plants—integrating architectural and physiological models. Environ Model Softw 12:35–42

    Article  Google Scholar 

  • Hanan J, Wang YP (2004) Floradig: a configurable program for capturing plant architecture. In: Godin C, Hanah J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) 4th International Workshop on Functional-Structural Plant Models, Montpellier, pp 407

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Kellomäki S, Strandman H (1995) A model for the structural growth of young Scots pine crowns based on light interception by shoots. Ecol Model 80:237–250

    Article  Google Scholar 

  • Massonnet C (2004) Variabilité architecturale et fonctionnelle du système aérien chez le pommier (Malus × domestica Borkh.): comparaison de quatre cultivars par une approche de modélisation structure-fonction. Thesis, Université Montpellier II, Montpellier

  • Nicolini E, Chanson B (1999) La pousse courte, un indicateur du degré de maturation chez le hêtre (Fagus sylvatica L.). Can J Bot 77:1539–1550

    Article  Google Scholar 

  • Niinemets U (1998) Are compound-leaved woody species inherently shade-tolerant? An analysis of species ecological requirements and foliar support costs. Plant Ecol 134:1–11

    Article  Google Scholar 

  • Oker-Blom P, Kellomäki S (1983) Effect of grouping of foliage on the within stand and within-crown light regime: comparison of random and grouping canopy models. Agric For Meteorol 28:143–155

    Article  Google Scholar 

  • Oker-Blom P, Smolander H (1988) The ratio of shoot silhouette area to total needle area in Scots pine. For Sci 34:894–906

    Google Scholar 

  • Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12

    Article  Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791

    Article  PubMed  Google Scholar 

  • Phattaralerphong J, Sinoquet H (2005) A method for 3D reconstruction of tree crown volume from photographs: assessment with 3D-digitized plants. Tree Physiol 25:1229–1242

    PubMed  CAS  Google Scholar 

  • Planchais I (1998) Modélisation de la croissance et de l’architecture du jeune Hêtre (Fagus sylvatica L.): effet de l’éclairement. Thesis, Université Paris XI, Orsay

  • Planchais I, Sinoquet H (1998) Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.). Agric For Meteorol 89:241–253

    Article  Google Scholar 

  • Polhemus Inc (1993) 3SPACE FASTRAK, User Manual, Revision F. Colchester, VT, USA

  • Pradal C, Dones N, Godin C, Barbier de Reuille P, Boudon F, Adam B, Sinoquet H (2004) ALEA: a software for integrating analysis and simulation tools for 3D architecture and ecophysiology. In: Godin C, Hanah J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) 4th International workshop on functional–structural plant models, Montpellier, pp 406

  • Richardson AD, Berlyn GP, Ashton PMS, Thadani R, Cameron IR (1999) Foliar plasticity of hybrid spruce in relation to crown position and stand age. Can J Bot 78:305–317

    Article  Google Scholar 

  • Sabatier S (1999) Variabilité morphologique et architecturale de deux espèces de noyers : Juglans regia L., Juglans nigra L. et de deux espèces de noyers hybrides interspécifiques. Thesis, Université Montpellier II, Montpellier

  • Sabatier S, Barthélémy D (2001) Annual shoot morphology and architecture in Persian Walnut, Juglans regia L. (Juglandaceae). Acta Hortic 544:255–264

    Google Scholar 

  • Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann For Sci 57:399–412

    Article  Google Scholar 

  • Sekimura T (1995) The diversity in shoot morphology of herbaceous plants in relation to solar radiation captured by leaves. J Theor Biol 177:289–297

    Article  Google Scholar 

  • Shlyakhter I, Rozenoer M, Dorsey J, Teller S (2001) Reconstructing 3D tree models from instrumented photographs. IEEE Comput Graph 21:53–61

    Article  Google Scholar 

  • Sinoquet H, Rivet P (1997) Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Trees 11:265–270

    Article  Google Scholar 

  • Sinoquet H, Adam B, Rivet P, Godin C (1997) Interactions between light and plant architecture in an agroforestry walnut tree. Agroforestry forum 8:37–40

    Google Scholar 

  • Sinoquet H, Thanisawanyangkura S, Mabrouk H, Kasemsap P (1998) Characterisation of light interception in canopies using 3D digitising and image processing. Ann Bot 82:203–212

    Article  Google Scholar 

  • Sinoquet H, Sonohat G, Phattaralerphong J, Godin C (2005) Foliage randomness and light interception in 3D digitised trees: an analysis from multiscale discretisation of the canopy. Plant Cell Environ 28:1158–1170

    Article  Google Scholar 

  • Sinoquet H, Le Roux X, Adam B, Ameglio T, Daudet FA (2001) RATP, a model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: application to an isolated tree crown. Plant Cell Environ 24:395–406

    Article  Google Scholar 

  • Sonohat G, Sinoquet H, Kulandaivelu V, Combes D, Lescourret F (2006) Three-dimensional reconstruction of partially 3D-digitised peach tree canopies. Tree Physiol 26:337–351

    Article  PubMed  Google Scholar 

  • Sonohat G, Sinoquet H, Varlet-Grancher C, Rakocevic M, Jacquet A, Simon JC, Adam B (2002) Leaf dispersion and light partitioning in three-dimensionally digitized tall fescue-white clover mixtures. Plant Cell Environ 25:529–538

    Article  Google Scholar 

  • Sterck FJ, Schieving F, Lemmens A, Pons TL (2005) Performance of trees in forest canopies: explorations with a bottom-up functional-structural plant growth model. New Phytol 166:827–843

    Article  PubMed  CAS  Google Scholar 

  • Takafumi T, Yamaguchi J, Takeda Y (1998) Measurements of forest canopy structure with laser plane range-finding method—development of a measurement system and applications to real forests. Agric For Meteorol 91:149–160

    Article  Google Scholar 

  • Takenaka A (1994) Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol Res 9:109–114

    Article  Google Scholar 

  • Takenaka A, Inui Y, Osawa A (1998) Measurements of three-dimensional structure of plants with a simple device and estimation of light capture of individual leaves. Funct Ecol 12:159–165

    Article  Google Scholar 

  • Tappeiner U, Cernusca A (1998) Model simulation of spatial distribution of photosynthesis in structurally differing plant communities in the Central Caucasus. Ecol Model 113:201–223

    Article  Google Scholar 

  • Thanisawanyangkura S, Sinoquet H, Rivet P, Cretenet M, Jallas E (1997) Leaf orientation and sunlit leaf area distribution in cotton. Agric For Meteorol 86:1–15

    Article  Google Scholar 

  • Valladares F, Pearcy RW (1998) The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia 114:1–10

    Article  Google Scholar 

  • Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) (2007) Functional–structural plant modelling in crop production. Wageningen UR Frontis Series 22, Wageningen, NL

  • Whitehead D, Grace J, Godfrey M (1990) Architectural distribution of foliage in individual Pinus radiata D. Don crowns and the effects of clumping on radiation interception. Tree Physiol 7:135–155

    PubMed  Google Scholar 

  • Willaume M, Lauri PE, Sinoquet H (2004) Light interception in apple trees influenced by canopy architecture manipulation. Trees 18:705–713

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Michaël Guéroult, Lydie Dufour and Sylvie Sabatier who helped for topological and geometric plant observations and measurements. Sylvie Sabatier made her data on internode length available. Christian Dupraz coordinated the SAFE project and the Restinclières agroforestry experimental site and contributed to discussions. We also thank Hervé Sinoquet and Évelyne Costes and two anonymous reviewers for their helpful comments and advice on the first version of the manuscript. This study was partly supported by the SAFE project (Silvoarable Agroforestry For Europe, E.U. contract QLK5-CT-2001-00560) and by a joint Ph.D. grant from the Région Languedoc-Roussillon and INRA. AMAP (Botany and Computational Plant Architecture) is a joint research unit which associates CIRAD (UMR51), CNRS (UMR5120), INRA (UMR931), IRD (R123), and Montpellier 2 University (UM27); http://www.amap.cirad.fr/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Auclair.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parveaud, CE., Chopard, J., Dauzat, J. et al. Modelling foliage characteristics in 3D tree crowns: influence on light interception and leaf irradiance. Trees 22, 87–104 (2008). https://doi.org/10.1007/s00468-007-0172-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-007-0172-9

Keywords

Navigation