Skip to main content

Advertisement

Log in

Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Stomatal frequency is often observed to vary inversely with atmospheric CO2 concentration (pCO2). The response is due to (1) individual phenotypic plasticity and (2) evolutionary change, depending on the time scale. Evolutionary responses occur more frequently than individual responses and individual responses are more pronounced under subambient pCO2 levels than under elevated pCO2 (“CO2 ceiling”). The evolutionary response appears therefore to be a valuable device for determining past pCO2. Since tree leaves often represent a conspicuous and rich resource of fossil material, they are increasingly important in this respect. Additionally, certain tree species are considered to represent “living fossils” and therefore valuable sources of ancient stomatal data. There are, however, numerous difficulties which have to be considered such as: (1) high variance of the data, especially for fossil material, (2) interspecific differences of the response, (3) the CO2 ceiling and (4) differences between short-term and long-term responses. Whereas the qualitative pCO2 signal of stomatal frequency appears to be reliable, quantitative pCO2 reconstruction has to be performed with caution. The results of a number of studies which used stomatal frequency as a pCO2 sensor demonstrate good agreement with the results obtained with other proxy data. Current techniques are based on “transfer functions” which calibrate the fossil data with extant material. It is suggested that a mechanistic approach including physical as well as physiological processes could improve pCO2 reconstruction. Furthermore, the topic of the influence of pCO2 on stomatal frequency is significant not only for reconstructing past pCO2 but also with respect to the climate-biosphere interrelationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature on the ground. Phil Mag 41:237–279

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in photosynthesis research. Martinus Nijhoff, Netherlands, pp 221–224

    Google Scholar 

  • Beerling DJ (1999) Stomatal density and index: theory and applications. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. The Geological Society, London, pp 251–256

    Google Scholar 

  • Beerling DJ (2002) Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. Proc Natl Acad Sci USA 99:12567–12571

    Google Scholar 

  • Beerling DJ, Chaloner WG (1993) Evolutionary responses of stomatal density to global CO2 change. Biol J Linn Soc 48:343–353

    Article  Google Scholar 

  • Beerling DJ, Kelly CK (1997) Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data. Am J Bot 84:1572–1583

    Google Scholar 

  • Beerling DJ, Woodward FI (1997) Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot J Linn Soc 124:137–153

    Google Scholar 

  • Beerling DJ, Royer DL (2002a) Fossil plants as indicators of the Phanerozoic global carbon cycle. Annu Rev Earth Planet Sci 30:527–556

    Article  CAS  Google Scholar 

  • Beerling DJ, Royer DL (2002b) Reading a CO2 signal from fossil stomata. New Phytol 153:387–397

    Article  CAS  Google Scholar 

  • Beerling DJ, Chaloner WG, Huntley B, Pearson JA, Tooley MJ (1993) Stomatal density responds to the glacial cycle of environmental change. Proc R Soc London B 251:133–138

    Google Scholar 

  • Beerling DJ, Birks HH, Woodward FI (1995) Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves. J Quat Sci 10:379–384

    Google Scholar 

  • Beerling DJ, McElwain JC, Osborne CP (1998) Stomatal responses of the living fossil Ginkgo biloba L. to changes in atmospheric CO2 concentrations. J Exp Bot 49:1603–1607

    CAS  Google Scholar 

  • Berner RA (2001) Modeling atmospheric O2 over Phanerozoic time. Geochim Cosmochim Acta 65:685–694

    CAS  Google Scholar 

  • Berner RA, Canfield DE (1989) A new model for atmospheric oxygen over Phanerozoic time. Am J Sci 289:59–91

    Google Scholar 

  • Berner RA, Kothvala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 291:339–376

    Google Scholar 

  • Berryman CA, Eamus D, Duff GA (1994) Stomatal responses to a range of variables in tree species grown with CO2 enrichment. J Exp Bot 45:539–546

    CAS  Google Scholar 

  • Boucot AJ, Gray J (2001) A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Earth-Sci Rev 56:1–159

    Google Scholar 

  • Brown HT, Escombe F (1900) Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants.Phil Trans R Soc London B 193:223–291

    CAS  Google Scholar 

  • Chaloner WG, McElwain J (1997) The fossil plant record and global climatic change. Rev Palaeobot Palynol 95:73–82

    Article  Google Scholar 

  • Chamberlin TC (1898) An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J Geol 7:545–584

    Google Scholar 

  • Chen L-Q, Li C-S, Chaloner WG, Beerling DJ, Sun Q-G, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am J Bot 88:1309–1315

    PubMed  Google Scholar 

  • Cleal CJ, James RM, Zodrow EL (1999) Variation in stomatal density in the Late Carboniferous Gymnosperm frond Neuropteris ovata. Palaios 14:180–185

    Google Scholar 

  • Clifford SC, Black CR Roberts JA, Stronach IM, Singleton-Jones PR, Mohamed AD, Azam-Ali SN (1995) The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis hypogaea) (L.)). J Exp Bot 46:847–852

    CAS  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of activity in the higher plant. Society for Experimental Biology Symposium, No. 31. Cambridge University Press, Cambridge, pp 471–505

    Google Scholar 

  • Croxdale JL (2000) Stomatal patterning in angiosperms. Am J Bot 87:1069–1080

    PubMed  Google Scholar 

  • Demicco RV, Lowenstein TK, Hardie LA (2003) Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology 31:793–796

    Article  CAS  Google Scholar 

  • Denk T, Velitzelos D (2002) First evidence of epidermal structures of Ginkgo from the Mediterranean Tertiary. Rev Palaeobot Palynol 120:1–15

    Google Scholar 

  • Dilcher DL (1974) Approaches to the identification of Angiosperm leaf remains. Bot Rev 40:2–145

    Google Scholar 

  • Drake BG, Gonzàlez-Meler MA Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  CAS  PubMed  Google Scholar 

  • Dutton JF, Barron EJ (1997) Miocene to present vegetation changes: a possible piece of the Cenozoic puzzle. Geology 25:39–41

    Article  Google Scholar 

  • Edwards D (1998) Climate signals in Palaeozoic land plants. Phil Trans R Soc London B 353:141–157

    Article  Google Scholar 

  • Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  Google Scholar 

  • Ferguson DK (1985) The origin of leaf assemblages—new light on an old problem. Rev Palaeobot Palynol 46:117–188

    Article  Google Scholar 

  • Ferris R, Taylor G (1994) Stomatal characteristics of four native herbs following exposure to elevated CO2. Ann Bot 73:447–453

    Article  CAS  Google Scholar 

  • Gastaldo RA Ferguson DK, Walther H, Rabold J (1996) Criteria to distinguish parautochthonous leaves in cenophytic alluvial channel-fills. Rev Palaeobot Palynol 90:1–21

    Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signaling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Jarman PD (1974) The diffusion of carbon dioxide and water vapour through stomata. J Exp Bot 25:927–936

    Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Google Scholar 

  • Jones HG (1998) Stomatal control photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Jones JH (1986) Evolution of the Fagaceae: the implications of foliar features. Ann Missouri Bot Gard 73:228–275

    Google Scholar 

  • Katul G, Leuning R, Oren R (2003) Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 26:339–350

    CAS  Google Scholar 

  • Keeley JE, Osmond CB, Raven JA (1984) Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature 310:694–695

    CAS  Google Scholar 

  • Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S, Royer JF (2002) Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: conflicting stomatal conductance and LAI responses. J Geophys Res-Atmos 107:Art. No. 4808

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    CAS  Google Scholar 

  • Körner C (1988) Does global increase of CO2 alter stomatal density? Flora 181:253–257

    Google Scholar 

  • Konrad W, Roth-Nebelsick A, Kerp H, Hass H (2000) Transpiration and assimilation of Early Devonian land plants with axially symmetric telomes—simulations on the tissue level. J Theor Biol 206:91–107

    Article  CAS  PubMed  Google Scholar 

  • Kouwenberg LL, McElwain JC, Kürschner W, Wagner F, Beerling DJ, Mayle FE, Visscher H (2003) Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. Am J Bot 90:610–619

    Google Scholar 

  • Kriegel K (2001) Untersuchung der Blattmorphologie und Blattanatomie von Eotrigonobalanus furcinervis (Rossmässler) Walther und Kvacek und seine Vergesellschaftung mit anderen tertiären Sippen vom Mitteleozän bis Oligo-/Miozän Mitteleuropas. Diploma thesis, Technische Universität Dresden, Fakultät für Mathematik und Naturwissenschaften

  • Kürschner WM (1996) Leaf stomata as biosensors of palaeoatmospheric CO2 levels. PhD thesis, Laboratory of Palaeobotany and Palynology, Utrecht University

  • Kürschner WM, van der Burgh J, Visscher H, Dilcher DL (1996) Oak leaves as biosensors of late Neogene and early Pleistocene palaeoatmospheric CO2 concentrations. Mar Micropal 27:299–312

    Article  Google Scholar 

  • Kürschner WM, Wagner F, Visscher EH, Visscher H (1997) Predicting the stomatal frequency response to a future CO2 enriched atmosphere: constraints from historical observations. Geol Rundsch 86:512–517

    Article  Google Scholar 

  • Kürschner WM, Stulen I, Wagner F, Kuiper PJC (1998) Comparison of palaeobotanical observations with experimental data on the leaf anatomy of Durmast oak [Quercus petraea (Fagaceae)] in response to environmental change. Ann Bot 81:657–664

    Article  Google Scholar 

  • Kürschner WM, Wagner F, Dilcher DL, Visscher H (2001) Using fossil leaves for the reconstruction of Cenozoic palaeoatmospheric CO2 concentration. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change. Am Assoc Pet Geol, Tulsa, Okla., pp 155–176

    Google Scholar 

  • Kvacek Z, Walther H (1978) Anisophylly and leaf homeomorphy in some Tertiary plants. Cour Forsch-Inst Senckenberg 30:84–94

    Google Scholar 

  • Kvacek Z, Walther H (1989) Revision der mitteleuropäischen Fagaceen nach blattepidermalen Charakteristiken. III. T. dryophyllumDebey ex Saporta und EotrigonobalanusWalther and Kvacek. Fedd Rep 100:575–601

    Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, Woodward FI (2001) Plant development—signals from mature to new leaves. Nature 411:154

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Woodward FI, Quick WP (2002) Long-distance CO2 signalling in plants. J Exp Bot 53:183–193

    Article  CAS  PubMed  Google Scholar 

  • Leuning R (1983) Transport of gases into leaves. Plant Cell Environ 6:181–194

    CAS  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    CAS  Google Scholar 

  • Madsen E (1973) Effect of CO2 concentration on the morphological, histological and cytological changes in tomato plants. Acta Agric Scand 23:241–246

    CAS  Google Scholar 

  • Mai DH (1995) Tertiäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Fischer, Jena

    Google Scholar 

  • Mai DH, Walther H (1991) Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abh Staatl Mus Mineral Geol Dresden 38:1–230

    Google Scholar 

  • Mai DH, Walther H (2000) Die Fundstellen eozäner Floren des Weisselster-Beckens und seiner Randgebiete. Altenburg Naturwiss Forsch 13:1–59

    Google Scholar 

  • McElwain JC (1998) Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Phil Trans R Soc London B 353:83–96

    Google Scholar 

  • McElwain J (2002) Is the greenhouse theory a fallacy? A paleontological paradox. Palaios 17:417–418

    Google Scholar 

  • McElwain JC, Chaloner WG (1995) Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Ann Bot 76:389–395

    Article  Google Scholar 

  • McElwain JC, Chaloner WG (1996) The fossil cuticle as a skeletal record of environmental change. Palaios 11:376–388

    Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390

    Article  CAS  PubMed  Google Scholar 

  • McElwain JC, Mayle FE, Beerling DJ (2002) Stomatal evidence for a decline in atmospheric CO2 concentrations during the Younger Dryas stadial: a comparison with Antarctic ice core records. J Quat Sci 17:21–29

    Article  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmedow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264

    Article  Google Scholar 

  • Micheels A (2003) Late Miocene climate modelling with ECHAM4/ML: the effects of the palaeovegetation on the Tortonian climate. PhD thesis, University of Tübingen

  • Miller KG, Fairbanks RG, Mountain GS (1987) Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography 2:1–19

    Google Scholar 

  • Moore BD, Cheng S-H, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    Article  CAS  Google Scholar 

  • Morison JIL (1998) Stomatal response to increased CO2 concentration. J Exp Bot Sp Iss 49:443–452

    Article  Google Scholar 

  • Niklas KJ (2000) Modeling fossil plant form-function relationships: a critique. Paleobiology 26:289–304

    Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. 2nd edn. Academic, New York

    Google Scholar 

  • O’Leary JW, Knecht GN (1981) Elevated CO2 concentration increases stomatal numbers in Phaseolus vulgaris leaves. Bot Gaz 142:438–441

    Article  Google Scholar 

  • Pagani M, Arthur MA, Freeman KH (1999) Miocene evolution of atmospheric carbon dioxide. Palaeoceanography 14:273–293

    Article  Google Scholar 

  • Pagani M, Freeman KH, Arthur MA (2000) Isotope analysis of molecular and total organic carbon from Miocene sediments. Geochim Cosmochim Acta 64:37–49

    Article  CAS  Google Scholar 

  • Paoletti E, Gellini R (1993) Stomatal density in beech and holm oak leaves collected over the last 200 years. Acta Oecol 14:173–178

    Google Scholar 

  • Parkhurst DF (1994) Tansley review No. 65. Diffusion of CO2 and other gases inside leaves. New Phytol 126:449–479

    CAS  Google Scholar 

  • Parkhurst DF, Mott KA (1990) Intercellular diffusion limits to CO2 uptake in leaves. Plant Physiol 94:1024–1032

    CAS  Google Scholar 

  • Parlange J-Y, Waggoner PE (1970) Stomatal dimensions and resistance to diffusion. Plant Physiol 46:337–342

    Google Scholar 

  • Pearson PE, Palmer MR (1999) Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284:1824–1826

    Article  CAS  PubMed  Google Scholar 

  • Pearson PE, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Matamala R (1990) Changes in N and S leaf content, stomatal density and specific leaf area in 14 plant species during the last three centuries. J Exp Bot 41:1119–1124

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzmann E, Stievenand M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Poole I, Kürschner WM (1999) Stomatal density and index: the practice. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. The Geological Society, London, pp 257–260

    Google Scholar 

  • Poole I, Leyers JDB, Lawson T, Raven JA (1996) Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant Cell Environ 19:705–712

    Google Scholar 

  • Poole I, Lawson T, Leyers JDB, Raven JA (2000) Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa. New Phytol 145:511–521

    Article  Google Scholar 

  • Raven JA (1977) The evolution of vascular plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    CAS  Google Scholar 

  • Raven JA (1984) Physiological correlates of the morphology of early vascular plants. Bot J Linn Soc 88:105–126

    Google Scholar 

  • Raymo ME, Grant B, Horowitz M, Rau GH (1996) Mid-Pliocene warmth: stronger greenhouse and conveyor. Mar Micropaleontol 27:312–326

    Article  Google Scholar 

  • Raven JA (2002) Tansley review no 131. Selection pressures on stomatal densities. New Phytol 153:371–386

    Article  CAS  Google Scholar 

  • Reid CD, Maherali H, Johnson HB, Smith SD, Wullschleger SD, Jackson RB (2003) On the relationship between stomatal characters and atmospheric CO2. Geophys Res Lett 30:Art. No. 1983

    Article  Google Scholar 

  • Retallack GJ (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290

    Article  CAS  PubMed  Google Scholar 

  • Rey A, Jarvis PG (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of CO2 exposure. Ann Bot 80:807–816

    Article  Google Scholar 

  • Roth-Nebelsick A, Konrad W (2003) Assimilation and transpiration capabilities of rhyniophytic plants from the Lower Devonian and their implications for paleoatmospheric CO2 concentration. Palaeogeogr Palaeocl 302:153–178

    Article  Google Scholar 

  • Roth-Nebelsick A, Utescher T, Mosbrugger V, Diester-Haass L, Walther H (2004) Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony, Germany. Palaeogeogr Palaeoecol 205:43–67

    Article  Google Scholar 

  • Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynol 114:1–28

    Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Sci Rev 54:349–392

    Article  CAS  Google Scholar 

  • Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA (2001) Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292:2310–2313

    Article  CAS  PubMed  Google Scholar 

  • Rundgren M, Beerling M (1999) A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. Holocene 9:509–513

    Article  Google Scholar 

  • Salisbury EJ (1927) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Phil Trans R Soc London B 216:1–65

    Google Scholar 

  • Schulze E-D, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Spicer RA (1981) The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. U.S. Geol Prof Paper 1143:1–77

    Google Scholar 

  • Talbott LD, Rahveh E, Zeiger E (2003) Relative humidity is a key factor in the acclimation of the stomatal response to CO2. J Exp Bot 54:2141–2147

    Article  CAS  PubMed  Google Scholar 

  • Thomas JF, Harvey CN (1983) Leaf anatomy of four species grown under continuous CO2 enrichment. Bot Gaz 144:303–309

    Article  Google Scholar 

  • Tichà I (1982) Photosynthetic characteristics during ontogenesis of leaves. 7. Stomatal density and size. Photosynthetica 16:375–471

    Google Scholar 

  • van der Burgh J (1993) Oaks related to Quercus petraea from the Upper Tertiary of the Lower Renish Basin. Palaeontographica 230:195–201

    Google Scholar 

  • van der Burgh J, Visscher H, Dilcher D, Kürschner W (1993) Paleoatmospheric signatures in Neogene fossil leaves. Science 260:1788–1790

    Google Scholar 

  • van de Water PK, Leavitt SW, Betancourt JL (1994) Trends in stomatal density and 13C/12C ratios of Pinus flexilis during last glacial-interglacial cycle. Science 264:239–242

    Google Scholar 

  • Veizer J, Godderis Y, Francois LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic Eon. Nature 408:651–652

    Article  PubMed  Google Scholar 

  • Wagner F, Below R, De Klerk P, Dilcher DL, Joosten H, Kürschner WM, Visscher H (1996) A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree on annual atmospheric CO2 increase. Proc Natl Acad Sci USA 93:11705–11708

    Google Scholar 

  • Wagner F, Bohncke SJP, Dilcher DL, Kürschner WM, van Geel B, Visscher H (1999) Century-scale shifts in Early Holocene atmospheric CO2 concentration. Science 284:1971–1973

    Article  CAS  PubMed  Google Scholar 

  • Wallmann K (2001) Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65:3005–3025

    Article  CAS  Google Scholar 

  • Walther H (1999) Die Tertiärflora von Kleinsaubernitz bei Bautzen. Palaeontographica Abt B 249:63–174

    Google Scholar 

  • Wellman CH, Gray J (2000) The microfossil record of early land plants. Phil Trans R Soc London B 355:717–731

    Article  CAS  Google Scholar 

  • Weyers JDB, Lawson T, Peng Z-Y (1997) Variation in stomatal characters at the whole-leaf level. In: Van Gardingen PR, Foody GM, Curran PJ (eds) Scaling up from cell to landscape. SEB seminar series, 63. Cambridge University Press, Cambridge, pp 129–149

    Google Scholar 

  • Willmer C, Fricker M (1996) Stomata 22nd edn. Chapman and Hall, London

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Google Scholar 

  • Woodrow IE (1994) Optimal acclimation of the C3 photosynthetic system under enhanced CO2. Photosynth Res 39:401–412

    CAS  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 concentration from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Woodward FI, Bazzazz FA (1988) The responses of stomatal density to CO2 partial pressure. J Exp Bot 39:1771–1781

    Google Scholar 

  • Woodward FI, Kelly CK (1995) The influence of CO2 concentration on stomatal density. New Phytol 131:311–327

    Google Scholar 

  • Woodward FI, Lake JA, Quick WP (2002) Stomatal development and CO2: ecological consequences. New Phytol 153:477–484

    Article  CAS  Google Scholar 

  • Wullschleger SD, Gunderson CA, Hanson PJ, Wilson KB, Norby RJ (2002a) Sensitivity of stomatal and canopy conductance to elevated CO2 concentration—interacting variables and perspectives of scale. New Phytol 153:485–496

    Article  CAS  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002b) Plant water relations at elevated CO2—implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Wynn JG (2003) Towards a physically based model of CO2-induced stomatal frequency response. New Phytol 157:394–398

    Article  Google Scholar 

  • Zachos JC, Stott LD, Lohmann KC (1994) Evolution of early Cenozoic marine temperatures. Paleoceanography 9:353–387

    Article  Google Scholar 

  • Zavaleta ES, Thomas BD, Chiariello NR, Asner GP, Shaw MR, Field CB (2003) Plants reverse warming effect on ecosystem water balance. Proc Natl Acad Sci USA 100:9892–9893

    Google Scholar 

Download references

Acknowledgements

I want to thank James Nebelsick, Tübingen, for critically reading the English manuscript. The work was financially supported by the German Science Foundation (DFG), project number MO 412/23-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Roth-Nebelsick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth-Nebelsick, A. Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor. Trees 19, 251–265 (2005). https://doi.org/10.1007/s00468-004-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-004-0375-2

Keywords

Navigation