Skip to main content
Log in

Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 3:407–413

    Google Scholar 

  2. Hu MC, Mo R, Bhella S, Wilson CW, Chuang P, Hui C, Rosenblum ND (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133:569–578

    CAS  PubMed  Google Scholar 

  3. Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086

    CAS  PubMed  Google Scholar 

  4. Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312

    CAS  PubMed  Google Scholar 

  5. Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448

    CAS  PubMed  Google Scholar 

  6. Böse J, Grotewold L, Rüther U (2002) Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11:1129–1135

    PubMed  Google Scholar 

  7. Pallister PD, Hecht F, Herrman J (1989) Three additional cases of the congenital hypothalamic “hamartoblastoma” (Pallister-Hall) syndrome. Am J Med Genet 33:500–501

    CAS  PubMed  Google Scholar 

  8. Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74

    CAS  PubMed  Google Scholar 

  9. Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipil P, West KA, McMahon AP, Humphreys BD (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson CW, Chuang P-T (2010) Mechanism and evolution of cytosolic hedgehog signal transduction. Development 137:2079–2094

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen CH, Von Kessler DP, Park W, Wang B, Ma Y, Beachy PA (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of hedgehog target gene expression. Cell 98:305–316

    CAS  PubMed  Google Scholar 

  12. Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:418–431

    CAS  Google Scholar 

  13. Wu F, Zhang Y, Sun B, McMahon AP, Wang Y (2017) Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol 24:252–280

    CAS  PubMed  Google Scholar 

  14. Colavito SA, Zou MR, Yan Q, Nguyen DX, Stern DF (2014) Significance of glioma-associated oncogene homolog 1 (GLI1) expression in claudin-low breast cancer and crosstalk with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway. Breast Cancer Res 16:1–18

    Google Scholar 

  15. Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, Li Z (2016) Hedgehog signaling non-canonical activated by pro-inflammatory cytokines in pancreatic ductal adenocarcinoma. J Cancer 7:2067–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma N, Nanta R, Sharma J, Gunewardena S, Singh KP, Shankar S, Srivastava RK (2015) PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget 6:32039–32060

    PubMed  PubMed Central  Google Scholar 

  17. Singh R, Dhanyamraju PK, Lauth M (2017) DYRK1B blocks canonical and promotes non-canonical hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 8:833–845

    PubMed  Google Scholar 

  18. Didiasova M, Schaefer L, Wygrecka M (2018) Targeting gli transcription factors in cancer. Molecules 23:1–19

    Google Scholar 

  19. Pan Y, Wang B (2009) Phosphorylation of Gli2 by protein kinase a is required for Gli2 processing and degradation and the sonic hedgehog-regulated mouse development. Dev Biol 55:177–189

    Google Scholar 

  20. Niewiadomski P, Kong J, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R (2014) Gli protein activity is controlled by multi-site phosphorylation in vertebrate hedgehog signaling. Cell Rep 6:168–181

    CAS  PubMed  Google Scholar 

  21. Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002) Shaggy/GSK3 antagonizes hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552

    CAS  PubMed  Google Scholar 

  22. Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) Gli activation by aPKC iota/lambda regulates basal cell carcinoma growth. Nature 494:484–488

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Price MA, Kalderon D (2002) Proteolysis of the hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108:823–835

    CAS  PubMed  Google Scholar 

  24. Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, Wu G, Wu D (2002) Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277:35156–35161

    CAS  PubMed  Google Scholar 

  25. Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423–434

    CAS  PubMed  Google Scholar 

  26. Rowan CJ, Li W, Martirosyan H, Erwood S, Hu D, Kim Y-K, Sheybani-Deloui S, Mulder J, Blake J, Chen L, Rosenblum ND (2018) Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 145:1–13

    Google Scholar 

  27. Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4:1–13

    Google Scholar 

  28. Blake J, Hu D, Cain JE, Rosenblum ND (2016) Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor. Hum Mol Genet 25:437–447

    CAS  PubMed  Google Scholar 

  29. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761

    CAS  PubMed  Google Scholar 

  30. Jenkins D, Winyard PJD, Woolf AS (2007) Immunohistochemical analysis of sonic hedgehog signalling in normal human urinary tract development. J Anat 211:620–629

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RCM, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GCM, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Narumi Y, Kosho T, Tsuruta G, Shiohara M, Shimazaki E, Mori T, Shimizu A, Igawa Y, Nishizawa S, Takagi K, Kawamura R, Wakui K, Fukushima Y (2010) Genital abnormalities in Pallister-Hall syndrome: report of two patients and review of the literature. Am J Med Genet A 152(A):3143–3147

    Google Scholar 

  33. Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A (2012) Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. J Appl Genet 53:415–422

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McPherson E, Cold C (2013) Severe Pallister-Hall syndrome with persistent urogenital sinus, renal agenesis, imperforate anus, bilateral hypothalamic hamartomas, and severe skeletal anomalies. Am J Med Genet A 161:2666–2669

    Google Scholar 

  35. Démurger F, Ichkou A, Mougou-Zerelli S, Le Merrer M, Goudefroye G, Delezoide AL, Quélin C, Manouvrier S, Baujat G, Fradin M, Pasquier L, Megarbané A, Faivre L, Baumann C, Nampoothiri S, Roume J, Isidor B, Lacombe D, Delrue MA, Mercier S, Philip N, Schaefer E, Holder M, Krause A, Laffargue F, Sinico M, Amram D, André G, Liquier A, Rossi M, Amiel J, Giuliano F, Boute O, Dieux-Coeslier A, Jacquemont ML, Afenjar A, Van Maldergem L, Lackmy-Port-Lis M, Vincent-Delorme C, Chauvet ML, Cormier-Daire V, Devisme L, Geneviève D, Munnich A, Viot G, Raoul O, Romana S, Gonzales M, Encha-Razavi F, Odent S, Vekemans M, Attie-Bitach T (2015) New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet 23:92–102

    PubMed  Google Scholar 

  36. Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 15:57–61

    Google Scholar 

  37. Tsanev R, Tiigimägi P, Michelson P, Metsis M, Østerlund T, Kogerman P (2009) Identification of the gene transcription repressor domain of Gli3. FEBS Lett 583:224–228

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnston JJ, Sapp JC, Turner JT, Amor D, Aftimos S, Aleck KA, Bocian M, Bodurtha JN, Cox GF, Cynthia J (2010) Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 31:1142–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito S, Kitazawa R, Haraguchi R, Kondo T, Ouchi A, Ueda Y, Kitazawa S (2018) Novel GLI3 variant causing overlapped Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS) phenotype with agenesis of gallbladder and pancreas. Diagn Pathol 13:1–4

    PubMed  PubMed Central  Google Scholar 

  40. Shirakawa T, Nakashima Y, Watanabe S, Harada S, Kinoshita M, Kihara T, Hamasaki Y, Shishido S, Yoshiura K, Moriuchi H, Dateki S (2018) A novel heterozygous GLI2 mutation in a patient with congenital urethral stricture and renal hypoplasia/dysplasia leading to end-stage renal failure. CEN Case Rep 7:94–97

    PubMed  PubMed Central  Google Scholar 

  41. Benzacken B, Siffroi JP, Le Bourhis C, Krabchi K, Joye N, Maschino F, Viguie F, Soulie J, Gonzales M, Migne G, Bucourt M, Encha-Razavi F, Carbillon L, Taillemite JL (1997) Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly. J Med Genet 34:899–903

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Masuno M, Fukushma Y, Sugio Y, Ikeda M, Kuroki Y (1990) Two unrelated cases of single maxillary central incisor with 7q terminal deletion. Jpn J Hum Genet 35:311–312

    CAS  Google Scholar 

  43. Wang J, Spitz L, Hayward R, Kiely E, Hall CM, O’Donoghue DP, Palmer R, Goodman FR, Scambler PJ, Winter RM, Reardon W (1999) Sacral dysgenesis associated with terminal deletion of chromosome 7q: a report of two families. Eur J Pediatr 158:902–905

    CAS  PubMed  Google Scholar 

  44. Zen PR, Riegel M, Rosa RF, Pinto LL, Graziadio C, Schwartz IV, Paskulin GA (2010) Esophageal stenosis in a child presenting a de novo 7q terminal deletion. Eur J Med Genet 53:333–336

    PubMed  Google Scholar 

  45. Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosence-phaly spectrum: mutation review and genotype-phenotype correlations. Hum Mutat 24:43–51

    CAS  PubMed  Google Scholar 

  46. Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND (2017) Activated hedgehog-GLI signaling causes congenital Ureteropelvic junction obstruction. J Am Soc Nephrol 29:1–13

    Google Scholar 

  47. Chen H, Ji HY, Yang Y (2016) The expression of Gli3 and Teashirt3 in the stenotic tissue of congenital pelvi-ureteric junction obstruction in children. Int J Med Sci 13:412–417

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121:1199–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rowan CJ, Sheybani-Deloui S, Rosenblum ND (2017) Kidney Development and Disease 60:205–229

    CAS  Google Scholar 

  50. Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Motoyama J, Takabatake T, Takeshima K, Hui CC (1998) Ptch2, a second mouse patched gene is co-expressed with sonic hedgehog. Nat Genet 18:104–106

    CAS  PubMed  Google Scholar 

  52. Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243:853–863

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Cruz, R., Stronks, K., Rowan, C.J. et al. Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr Nephrol 35, 725–731 (2020). https://doi.org/10.1007/s00467-019-04240-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04240-8

Keywords

Navigation