Skip to main content
Log in

Augmented renal clearance: a common condition in critically ill children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Augmented renal clearance (ARC), an increase in kidney function with enhanced elimination of circulating solute, has been increasingly recognized in critically ill adults. In a pediatric intensive care setting, data are scarce. The primary objective of this study was to investigate the prevalence of ARC in critically ill children. Secondary objectives included a risk factor analysis for the development of ARC and a comparison of two methods for assessment of renal function.

Methods

In 105 critically ill children between 1 month and 15 years of age, glomerular filtration rate (GFR) was measured by means of a daily 24-h creatinine clearance (24 h ClCr) and compared to an estimated GFR using the revised Schwartz formula. Logistic regression analysis was used to identify risk factors for ARC.

Results

Overall, 67% of patients expressed ARC and the proportion of ARC patients decreased during consecutive days. ARC patients had a median ClCr of 142.2 ml/min/1.73m2 (IQR 47.1). Male gender and antibiotic treatment were independently associated with the occurrence of ARC. The revised Schwartz formula seems less appropriate for ARC detection.

Conclusions

A large proportion of critically ill children develop ARC during their stay at the intensive care unit. Clinicians should be cautious when using Schwartz formula to detect ARC. Our findings require confirmation from large study cohorts and investigation of the relationship with clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, Lipman J (2011) A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 15:R139

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, Lizan-Garcia M (2008) Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 36:674–680

    Article  CAS  PubMed  Google Scholar 

  3. Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ (2013) Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care 28:695–700

    Article  CAS  PubMed  Google Scholar 

  4. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J (2014) Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med 42:520–527

    Article  CAS  PubMed  Google Scholar 

  5. Adnan S, Ratnam S, Kumar S, Paterson D, Lipman J, Roberts J, Udy AA (2014) Select critically ill patients at risk of augmented renal clearance: experience in a Malaysian intensive care unit. Anaesth Intensive Care 42:715–722

    Article  CAS  PubMed  Google Scholar 

  6. Ruiz S, Minville V, Asehnoune K, Virtos M, Georges B, Fourcade O, Conil JM (2015) Screening of patients with augmented renal clearance in ICU: taking into account the CKD-EPI equation, the age, and the cause of admission. Ann Intensive Care 5:49

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kawano Y, Morimoto S, Izutani Y, Muranishi K, Kaneyama H, Hoshino K, Nishida T, Ishikura H (2016) Augmented renal clearance in Japanese intensive care unit patients: a prospective study. J Intensive Care 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  8. Campassi ML, Gonzalez MC, Masevicius FD, Vazquez AR, Moseinco M, Navarro NC, Previgliano L, Rubatto NP, Benites MH, Estenssoro E, Dubin A (2014) Augmented renal clearance in critically ill patients: incidence, associated factors and effects on vancomycin treatment. Rev Bras Ter Intensiva 26:13–20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grootaert V, Willems L, Debaveye Y, Meyfroidt G, Spriet I (2012) Augmented renal clearance in the critically ill: how to assess kidney function. Ann Pharmacother 46:952–959

    Article  PubMed  Google Scholar 

  10. De Waele JJ, Dumoulin A, Janssen A, Hoste EA (2015) Epidemiology of augmented renal clearance in mixed ICU patients. Minerva Anestesiol 81:1079–1085

    PubMed  Google Scholar 

  11. Barletta JF, Mangram AJ, Byrne M, Hollingworth AK, Sucher JF, Ali-Osman FR, Shirah GR, Dzandu JK (2016) The importance of empiric antibiotic dosing in critically ill trauma patients: are we under-dosing based on augmented renal clearance and inaccurate renal clearance estimates? J Trauma Acute Care Surg 81:1115–1121

    Article  CAS  PubMed  Google Scholar 

  12. Udy AA, Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, Gomersall C, Shirwadkar C, Eastwood GM, Myburgh J, Paterson DL, Starr T, Paul SK, Lipman J (2017) Association between augmented renal clearance and clinical outcomes in patients receiving beta-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomised, placebo-controlled, clinical trial. Int J Antimicrob Agents 49:624–630

    Article  CAS  PubMed  Google Scholar 

  13. Declercq P, Nijs S, D'Hoore A, Van Wijngaerden E, Wolthuis A, de Buck van Overstraeten A, Wauters J, Spriet I (2016) Augmented renal clearance in non-critically ill abdominal and trauma surgery patients is an underestimated phenomenon: a point prevalence study. J Trauma Acute Care Surg 81:468–477

    Article  PubMed  Google Scholar 

  14. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, Depuydt P, Decruyenaere J, Lipman J, Wallis SC, De Waele JJ (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84

    Article  PubMed  PubMed Central  Google Scholar 

  15. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J (2013) Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 17:R35

    Article  PubMed  PubMed Central  Google Scholar 

  16. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J (2010) Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49:1–16

    Article  CAS  PubMed  Google Scholar 

  17. Sime FB, Udy AA, Roberts JA (2015) Augmented renal clearance in critically ill patients: etiology, definition, and implications for beta-lactam dose optimization. Curr Opin Pharmacol 24:1–6

    Article  CAS  PubMed  Google Scholar 

  18. Dhont E, Van Der Heggen T, De Jaeger A, Vande Walle J, De Paepe P, De Cock PA (2018) Augmented renal clearance in pediatric intensive care: are we undertreating our sickest patients? Pediatr Nephrol. https://doi.org/10.1007/s00467-018-4120-2

  19. Udy AA, Jarrett P, Stuart J, Lassig-Smith M, Starr T, Dunlop R, Wallis SC, Roberts JA, Lipman J (2014) Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds. Crit Care 18:657

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851 quiz 859

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  22. Speeckaert MM, Wuyts B, Stove V, Walle JV, Delanghe JR (2012) Compensating for the influence of total serum protein in the Schwartz formula. Clin Chem Lab Med 50:1597–1600

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843

    Article  PubMed  Google Scholar 

  24. Gibb DM, Dalton NR, Barratt MT (1989) Measurement of glomerular filtration rate in children with insulin-dependent diabetes mellitus. Clin Chim Acta 182:131–139

    Article  CAS  PubMed  Google Scholar 

  25. Piepsz A, Tondeur M, Ham H (2006) Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging 33:1477–1482

    Article  CAS  PubMed  Google Scholar 

  26. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035

    Article  CAS  PubMed  Google Scholar 

  27. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS (2003) National Kidney Foundation’s kidney disease outcomes quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 111:1416–1421

    Article  PubMed  Google Scholar 

  28. Leteurtre S, Duhamel A, Salleron J, Grandbastien B, Lacroix J, Leclerc F (2013) PELOD-2: an update of the PEdiatric logistic organ dysfunction score. Crit Care Med 41:1761–1773

    Article  PubMed  Google Scholar 

  29. Pollack MM, Ruttimann UE, Getson PR (1988) Pediatric risk of mortality (PRISM) score. Crit Care Med 16:1110–1116

    Article  CAS  PubMed  Google Scholar 

  30. Bresolin N, Bianchini AP, Haas CA (2013) Pediatric acute kidney injury assessed by pRIFLE as a prognostic factor in the intensive care unit. Pediatr Nephrol 28:485–492

    Article  PubMed  Google Scholar 

  31. Avedissian SN, Bradley E, Zhang D, Bradley JS, Nazer LH, Tran TM, Nguyen A, Le J (2017) Augmented renal clearance using population-based pharmacokinetic modeling in critically ill pediatric patients. Pediatr Crit Care Med 18:e388–e394

    Article  PubMed  Google Scholar 

  32. Barletta JF, Mangram AJ, Byrne M, Sucher JF, Hollingworth AK, Ali-Osman FR, Shirah GR, Haley M, Dzandu JK (2017) Identifying augmented renal clearance in trauma patients: validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg 82:665–671

    Article  PubMed  Google Scholar 

  33. De Cock PA, Mulla H, Desmet S, De Somer F, McWhinney BC, Ungerer JP, Moerman A, Commeyne S, Vande Walle J, Francois K, Van Hasselt JG, De Paepe P (2017) Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J Antimicrob Chemother 72:791–800

    PubMed  Google Scholar 

  34. Saiki H, Kuwata S, Kurishima C, Iwamoto Y, Ishido H, Masutani S, Senzaki H (2016) Prevalence, implication, and determinants of worsening renal function after surgery for congenital heart disease. Heart Vessel 31:1313–1318

    Article  Google Scholar 

  35. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, Lipman J, Roberts JA (2012) Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39

    Article  CAS  PubMed  Google Scholar 

  36. Baptista JP, Sousa E, Martins PJ, Pimentel JM (2012) Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int J Antimicrob Agents 39:420–423

    Article  CAS  PubMed  Google Scholar 

  37. Minkute R, Briedis V, Steponaviciute R, Vitkauskiene A, Maciulaitis R (2013) Augmented renal clearance–an evolving risk factor to consider during the treatment with vancomycin. J Clin Pharm Ther 38:462–467

    Article  CAS  PubMed  Google Scholar 

  38. Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L, Daali Y, Pugin J, Karmime A, Fathi M, Lew D, Harbarth S (2015) Augmented renal clearance, low beta-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents 45:385–392

    Article  CAS  PubMed  Google Scholar 

  39. Conil JM, Georges B, Mimoz O, Dieye E, Ruiz S, Cougot P, Samii K, Houin G, Saivin S (2006) Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med 32:2063–2066

    Article  CAS  PubMed  Google Scholar 

  40. Akers KS, Niece KL, Chung KK, Cannon JW, Cota JM, Murray CK (2014) Modified augmented renal clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. J Trauma Acute Care Surg 77:S163–S170

    Article  PubMed  Google Scholar 

  41. Lee B, Kim J, Park JD, Kang HM, Cho YS, Kim KS (2017) Predicting augmented renal clearance using estimated glomerular filtration rate in critically-ill children. Clin Nephrol 88:148–155

    Article  CAS  PubMed  Google Scholar 

  42. De Cock PA, Standing JF, Barker CI, de Jaeger A, Dhont E, Carlier M, Verstraete AG, Delanghe JR, Robays H, De Paepe P (2015) Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob Agents Chemother 59:7027–7035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cies JJ, Moore WS, Enache A, Chopra A (2017) Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J Pediatr Pharmacol Ther 22:276–285

    PubMed  PubMed Central  Google Scholar 

  44. Delanaye P, Cavalier E, Pottel H (2017) Serum creatinine: not so simple! Nephron 136:302–308

    Article  CAS  PubMed  Google Scholar 

  45. Delanghe JR (2008) How to establish glomerular filtration rate in children. Scand J Clin Lab Investig Suppl 241:46–51

    Article  CAS  Google Scholar 

  46. Padgett D, Ostrenga A, Lepard L (2017) Comparison of methods of estimating creatinine clearance in pediatric patients. Am J Health Syst Pharm 74:826–830

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Benjamin Leenknegt, Karlien Roelandt, and Nick Boeykens for their help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Van Der Heggen.

Ethics declarations

This study was approved by the institutional ethics committee and written informed consent was obtained from the parents or legal representatives and from the patients older than 12 years.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Der Heggen, T., Dhont, E., Peperstraete, H. et al. Augmented renal clearance: a common condition in critically ill children. Pediatr Nephrol 34, 1099–1106 (2019). https://doi.org/10.1007/s00467-019-04205-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04205-x

Keywords

Navigation