Skip to main content
Log in

Wt1 in the kidney—a tale in mouse models

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The WT1 gene was originally identified through its involvement in the development of Wilms tumours. The gene is characterized by a plethora of different isoforms with, in some cases, clearly different functions in transcriptional control and RNA metabolism. Many different mouse models for Wt1 have already been generated, and these are increasingly providing new information on the molecular roles of Wt1 in normal development and disease. In this review we discuss the different models that have been generated and what they have taught us about the role of Wt1 in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA (1990) Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778

    Article  CAS  PubMed  Google Scholar 

  2. Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Douglass EC, Housman DE (1990) An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61:1257–1269

    Article  CAS  PubMed  Google Scholar 

  3. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60:509–520

    Article  CAS  PubMed  Google Scholar 

  4. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D, Van Heyningen V, Hastie N (1990) The candidate Wilms' tumour gene is involved in genitourinary development. Nature 346:194–197

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB (1993) The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97

    Article  CAS  PubMed  Google Scholar 

  6. Miller-Hodges E, Hohenstein P (2012) WT1 in disease: shifting the epithelial-mesenchymal balance. J Pathol 226:229–240

    Article  CAS  PubMed  Google Scholar 

  7. Hohenstein P, Hastie ND (2006) The many facets of the Wilms' tumour gene, WT1. Hum Mol Genet 15(2):R196–R201

    Article  CAS  PubMed  Google Scholar 

  8. Roberts SG (2005) Transcriptional regulation by WT1 in development. Curr Opin Genet Dev 15:542–547

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Estrada OM, Lettice LA, Essafi A, Guadix JA, Slight J, Velecela V, Hall E, Reichmann J, Devenney PS, Hohenstein P, Hosen N, Hill RE, Munoz-Chapuli R, Hastie ND (2010) Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet 42:89–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L, Velecela V, Martinez-Estrada OM, Wiltshire JH, Roberts SG, Brownstein D, Davies JA, Hastie ND, Hohenstein P (2011) A Wt1-controlled chromatin switching mechanism underpins tissue-specific Wnt4 activation and repression. Dev Cell 21:559–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Larsson SH, Charlieu JP, Miyagawa K, Engelkamp D, Rassoulzadegan M, Ross A, Cuzin F, van Heyningen V, Hastie ND (1995) Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81:391–401

    Article  CAS  PubMed  Google Scholar 

  12. Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12:3217–3225

    Article  CAS  PubMed  Google Scholar 

  13. Ladomery M, Sommerville J, Woolner S, Slight J, Hastie N (2003) Expression in Xenopus oocytes shows that WT1 binds transcripts in vivo, with a central role for zinc finger one. J Cell Sci 116:1539–1549

    Article  CAS  PubMed  Google Scholar 

  14. Wells J, Rivera MN, Kim WJ, Starbuck K, Haber DA (2010) The predominant WT1 isoform (+KTS) encodes a DNA-binding protein targeting the planar cell polarity gene Scribble in renal podocytes. Mol Cancer Res 8:975–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND (2004) The Wilms' tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet 13:463–471

    Article  CAS  PubMed  Google Scholar 

  16. Vajjhala PR, Macmillan E, Gonda T, Little M (2003) The Wilms' tumour suppressor protein, WT1, undergoes CRM1-independent nucleocytoplasmic shuttling. FEBS Lett 554:143–148

    Article  CAS  PubMed  Google Scholar 

  17. Dudnakova T, Spraggon L, Slight J, Hastie N (2010) Actin: a novel interaction partner of WT1 influencing its cell dynamic properties. Oncogene 29:1085–1092

    Article  CAS  PubMed  Google Scholar 

  18. Moore AW, Schedl A, McInnes L, Doyle M, Hecksher-Sorensen J, Hastie ND (1998) YAC transgenic analysis reveals Wilms' tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech Dev 79:169–184

    Article  CAS  PubMed  Google Scholar 

  19. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15:1035–1044

    Article  CAS  PubMed  Google Scholar 

  21. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  CAS  PubMed  Google Scholar 

  22. Wagner KD, Wagner N, Vidal VP, Schley G, Wilhelm D, Schedl A, Englert C, Scholz H (2002) The Wilms' tumor gene Wt1 is required for normal development of the retina. EMBO J 21:1398–1405

    Article  CAS  PubMed  Google Scholar 

  23. Wagner N, Wagner KD, Hammes A, Kirschner KM, Vidal VP, Schedl A, Scholz H (2005) A splice variant of the Wilms' tumour suppressor Wt1 is required for normal development of the olfactory system. Development 132:1327–1336

    Article  CAS  PubMed  Google Scholar 

  24. Herzer U, Crocoll A, Barton D, Howells N, Englert C (1999) The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr Biol 9:837–840

    Article  CAS  PubMed  Google Scholar 

  25. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, Briner J, von Knebel DM (1999) Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms' tumors. Cancer Res 59:3880–3882

    CAS  PubMed  Google Scholar 

  26. Maiti S, Alam R, Amos CI, Huff V (2000) Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res 60:6288–6292

    CAS  PubMed  Google Scholar 

  27. Hastie ND (1994) The genetics of Wilms' tumor—a case of disrupted development. Annu Rev Genet 28:523–558

    Article  CAS  PubMed  Google Scholar 

  28. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  CAS  PubMed  Google Scholar 

  29. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    CAS  PubMed  Google Scholar 

  30. Sim EU, Smith A, Szilagi E, Rae F, Ioannou P, Lindsay MH, Little MH (2002) Wnt-4 regulation by the Wilms' tumour suppressor gene, WT1. Oncogene 21:2948–2960

    Article  CAS  PubMed  Google Scholar 

  31. Davies JA, Ladomery M, Hohenstein P, Michael L, Shafe A, Spraggon L, Hastie N (2004) Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum Mol Genet 13:235–246

    Article  CAS  PubMed  Google Scholar 

  32. Hartwig S, Ho J, Pandey P, Macisaac K, Taglienti M, Xiang M, Alterovitz G, Ramoni M, Fraenkel E, Kreidberg JA (2010) Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 137:1189–1203

    Article  CAS  PubMed  Google Scholar 

  33. Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR, Lecureuil C, Guillou F, Huff V (2006) The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci USA 103:11987–11992

    Article  CAS  PubMed  Google Scholar 

  34. Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, Stewart J, Strong LC, Behringer RR, Huff V (2011) Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest 121:174–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bouchard M, Souabni A, Busslinger M (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis 38:105–109

    Article  CAS  PubMed  Google Scholar 

  36. Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE, Houghton DC, Junien C, Habib R, Fouser L, Fine RN, Silverman BL, Haber DA, Housman D (1991) Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67:437–447

    Article  CAS  PubMed  Google Scholar 

  37. Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, Behringer RR, Huff V (2004) The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol 24:9899–9910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Patek CE, Little MH, Fleming S, Miles C, Charlieu JP, Clarke AR, Miyagawa K, Christie S, Doig J, Harrison DJ, Porteous DJ, Brookes AJ, Hooper ML, Hastie ND (1999) A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci USA 96:2931–2936

    Article  CAS  PubMed  Google Scholar 

  39. Patek CE, Brownstein DG, Fleming S, Wroe C, Rose L, Webb A, Berry RL, Devenney PS, Walker M, Maddocks OD, Lawrence NJ, Harrison DJ, Wood KM, Miles CG, Hooper ML (2008) Effects on kidney disease, fertility and development in mice inheriting a protein-truncating Denys-Drash syndrome allele (Wt1tmT396). Transgenic Res 17:459–475

    Article  CAS  PubMed  Google Scholar 

  40. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857

    CAS  PubMed  Google Scholar 

  41. Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, Hastie ND, Schedl A (2002) WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 11:651–659

    Article  CAS  PubMed  Google Scholar 

  42. Menke AL AIJ, Fleming S, Ross A, Medine CN, Patek CE, Spraggon L, Hughes J, Clarke AR, Hastie ND (2003) The wt1-heterozygous mouse; a model to study the development of glomerular sclerosis. J Pathol 200:667–674

    Article  PubMed  Google Scholar 

  43. Natoli TA, Liu J, Eremina V, Hodgens K, Li C, Hamano Y, Mundel P, Kalluri R, Miner JH, Quaggin SE, Kreidberg JA (2002) A mutant form of the Wilms' tumor suppressor gene WT1 observed in Denys-Drash syndrome interferes with glomerular capillary development. J Am Soc Nephrol 13:2058–2067

    Article  CAS  PubMed  Google Scholar 

  44. Chau YY, Brownstein D, Mjoseng H, Lee WC, Buza-Vidas N, Nerlov C, Jacobsen SE, Perry P, Berry R, Thornburn A, Sexton D, Morton N, Hohenstein P, Freyer E, Samuel K, van't Hof R, Hastie N (2011) Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet 7:e1002404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Royer-Pokora B, Beier M, Henzler M, Alam R, Schumacher V, Weirich A, Huff V (2004) Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A 127A:249–257

    Article  PubMed  Google Scholar 

  46. Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, Fekete CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17:467–470

    Article  CAS  PubMed  Google Scholar 

  47. Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A (2001) Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329

    Article  CAS  PubMed  Google Scholar 

  48. Natoli TA, McDonald A, Alberta JA, Taglienti ME, Housman DE, Kreidberg JA (2002) A mammal-specific exon of WT1 is not required for development or fertility. Mol Cell Biol 22:4433–4438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Miles CG, Slight J, Spraggon L, O'Sullivan M, Patek C, Hastie ND (2003) Mice lacking the 68-amino-acid, mammal-specific N-terminal extension of WT1 develop normally and are fertile. Mol Cell Biol 23:2608–2613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Richard DJ, Schumacher V, Royer-Pokora B, Roberts SG (2001) Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Genes Dev 15:328–339

    Article  CAS  PubMed  Google Scholar 

  51. Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, Kawakami M, Oji Y, Oka Y, Okabe M, Tan B, Sugiyama H, Weissman IL (2007) The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 21:1783–1791

    Article  CAS  PubMed  Google Scholar 

  52. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dallosso AR, Hancock AL, Brown KW, Williams AC, Jackson S, Malik K (2004) Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours. Hum Mol Genet 13:405–415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hohenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozdemir, D.D., Hohenstein, P. Wt1 in the kidney—a tale in mouse models. Pediatr Nephrol 29, 687–693 (2014). https://doi.org/10.1007/s00467-013-2673-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2673-7

Keywords

Navigation