Skip to main content

Advertisement

Log in

Gene regulatory network of renal primordium development

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Animal development progresses through the stepwise deployment of gene regulatory networks (GRN) encoded in the genome. Comparative analyses in different species and organ systems have revealed that GRN blueprints are composed of subcircuits with stereotypical architectures that are often reused as modular units. In this review, we report the evidence for the GRN underlying renal primordium development. In vertebrates, renal development is initiated by the induction of a field of intermediate mesoderm cells competent to undergo lineage specification and nephric (Wolffian) duct formation. Definition of the renal field leads to the activation of a core regulatory subcircuit composed of the transcription factors Pax2/8, Gata3 and Lim1. These transcription factors turn on a second layer of transcriptional regulators while also activating effectors of tissue morphogenesis and cellular specialization. Elongation and connection of the nephric duct to the cloaca (bladder/urethra primordium) is followed by metanephric kidney induction through signals emanating from the metanephric mesenchyme. Central to this process is the activation and positioning of the glial cell line-derived neurotrophic factor (Gdnf)–Ret signaling pathway by network subcircuits located in the mesenchyme and epithelial tissues of the caudal trunk. Evidence shows that each step of the renal primordium developmental program is regulated by structured GRN subunits organized in a hierarchical manner. Understanding the structure and dynamics of the renal GRN will help us understand the intrinsic phenotypical variability of congenital anomalies of the kidney and urinary tract and guide our approaches to regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  PubMed  Google Scholar 

  2. Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920

    Article  CAS  PubMed  Google Scholar 

  3. Olson EN (2002) A genetic blueprint for growth and development of the heart. Harvey Lect 98:41–64

    PubMed  Google Scholar 

  4. Davidson EH (2009) Network design principles from the sea urchin embryo. Curr Opin Genet Dev 19:535–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Uetani N, Bouchard M (2009) Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet 75:307–317

    Article  CAS  PubMed  Google Scholar 

  6. Bouchard M, Souabni A, Busslinger M (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis 38:105–109

    Article  CAS  PubMed  Google Scholar 

  7. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  8. Barak H, Rosenfelder L, Schultheiss TM, Reshef R (2005) Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev Dyn 232:901–914

    Article  CAS  PubMed  Google Scholar 

  9. James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125

    Article  CAS  PubMed  Google Scholar 

  10. Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC (2000) Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220:62–75

    Article  CAS  PubMed  Google Scholar 

  11. Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108

    CAS  PubMed  Google Scholar 

  12. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004

    Article  CAS  PubMed  Google Scholar 

  13. Wilm B, James RG, Schultheiss TM, Hogan BL (2004) The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 271:176–189

    Article  CAS  PubMed  Google Scholar 

  14. Fleming BM, Yelin R, James RG, Schultheiss TM (2013) A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 140:1819–1829

    Article  CAS  PubMed  Google Scholar 

  15. Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dolle P, Bellefroid EJ, Umbhauer M (2006) Retinoic acid signalling is required for specification of pronephric cell fate. Dev Biol 299:35–51

    Article  CAS  PubMed  Google Scholar 

  16. Moriya N, Uchiyama H, Asashima M (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Dev Growth Diff 35:123–128

    Article  CAS  Google Scholar 

  17. Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366

    Article  CAS  PubMed  Google Scholar 

  18. Taira M, Otani H, Jamrich M, Dawid IB (1994) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120:1525–1536

    CAS  PubMed  Google Scholar 

  19. Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938

    Article  CAS  PubMed  Google Scholar 

  20. Taira M, Otani H, Saint-Jeannet JP, Dawid IB (1994) Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372:677–679

    Article  CAS  PubMed  Google Scholar 

  21. Preger-Ben Noon E, Barak H, Guttmann-Raviv N, Reshef R (2009) Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 136:1995–2004

    Article  CAS  PubMed  Google Scholar 

  22. Attia L, Yelin R, Schultheiss TM (2012) Analysis of nephric duct specification in the avian embryo. Development 139:4143–4151

    Article  CAS  PubMed  Google Scholar 

  23. Heller N, Brandli AW (1999) Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev Genet 24:208–219

    Article  CAS  PubMed  Google Scholar 

  24. Krauss S, Johansen T, Korzh V, Fjose A (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113:1193–1206

    CAS  PubMed  Google Scholar 

  25. Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125:3063–3074

    CAS  PubMed  Google Scholar 

  26. Puschel AW, Westerfield M, Dressler GR (1992) Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish. Mech Dev 38:197–208

    Article  CAS  PubMed  Google Scholar 

  27. Carroll TJ, Wallingford JB, Vize PD (1999) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207

    Article  CAS  PubMed  Google Scholar 

  28. Sheng G, Stern CD (1999) Gata2 and Gata3: novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mech Dev 87:213–216

    Article  CAS  PubMed  Google Scholar 

  29. Wingert RA, Davidson AJ (2011) Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn 240:2011–2027

    Article  CAS  PubMed  Google Scholar 

  30. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970

    Article  CAS  PubMed  Google Scholar 

  31. Barnes JD, Crosby JL, Jones CM, Wright CV, Hogan BL (1994) Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161:168–178

    Article  PubMed  Google Scholar 

  32. Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H (1994) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn 199:73–83

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132:2809–2823

    Article  CAS  PubMed  Google Scholar 

  34. Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223:77–90

    Article  CAS  PubMed  Google Scholar 

  35. Pedersen A, Skjong C, Shawlot W (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288:571–581

    Article  CAS  PubMed  Google Scholar 

  36. Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430

    Article  CAS  PubMed  Google Scholar 

  37. Boualia SK, Gaitan Y, Tremblay M, Sharma R, Cardin J, Kania A, Bouchard M (2013) A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev Biol. doi:10.1016/j.ydbio.2013.07.028

    PubMed  Google Scholar 

  38. Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61

    Article  CAS  PubMed  Google Scholar 

  39. Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M (2011) Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PloS One 6:e21529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bedell VM, Person AD, Larson JD, McLoon A, Balciunas D, Clark KJ, Neff KI, Nelson KE, Bill BR, Schimmenti LA, Beiraghi S, Ekker SC (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139:793–804

    Article  PubMed  Google Scholar 

  41. Linton JM, Martin GR, Reichardt LF (2007) The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134:2501–2509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:e1000316

    Article  PubMed Central  PubMed  Google Scholar 

  43. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Nat Acad Sci USA 93:10657–10661

    Article  CAS  PubMed  Google Scholar 

  44. Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M (2011) Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138:2089–2097

    Article  CAS  PubMed  Google Scholar 

  45. Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115

    Article  CAS  PubMed  Google Scholar 

  47. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P, Costantini F, Gilbert T, Molotkov A, Mendelsohn C (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137:283–292

    Article  CAS  PubMed  Google Scholar 

  48. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    CAS  PubMed  Google Scholar 

  49. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94

    Article  CAS  PubMed  Google Scholar 

  50. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664

    CAS  PubMed  Google Scholar 

  51. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185

    Article  CAS  PubMed  Google Scholar 

  52. Menshykau D, Iber D (2013) Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism. Phys Biol 10:046003

    Article  PubMed  Google Scholar 

  53. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    Article  CAS  PubMed  Google Scholar 

  55. Tufro A, Teichman J, Woda C, Villegas G (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125:558–568

    Article  CAS  PubMed  Google Scholar 

  56. Ueland J, Yuan A, Marlier A, Gallagher AR, Karihaloo A (2009) A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study. Dev Dyn 238:1083–1091

    Article  CAS  PubMed  Google Scholar 

  57. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    Article  CAS  PubMed  Google Scholar 

  59. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver_Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  PubMed  Google Scholar 

  60. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  CAS  PubMed  Google Scholar 

  61. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  62. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  CAS  PubMed  Google Scholar 

  63. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  PubMed  Google Scholar 

  64. Ye X, Wang Y, Rattner A, Nathans J (2011) Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development 138:1161–1172

    Article  CAS  PubMed  Google Scholar 

  65. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  67. Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134:2397–2405

    Article  CAS  PubMed  Google Scholar 

  68. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410

    Article  CAS  PubMed  Google Scholar 

  69. Goncalves A, Zeller R (2011) Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PloS One 6:e19370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Choi Y, Tee JB, Gallegos TF, Shah MM, Oishi H, Sakurai H, Kitamura S, Wu W, Bush KT, Nigam SK (2009) Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct. Development 136:4213–4224

    Article  CAS  PubMed  Google Scholar 

  71. Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432

    Article  CAS  PubMed  Google Scholar 

  72. Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336

    Article  CAS  PubMed  Google Scholar 

  73. Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27:7661–7668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303

    Article  CAS  PubMed  Google Scholar 

  76. Esquela AF, Lee SJ (2003) Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol 257:356–370

    Article  CAS  PubMed  Google Scholar 

  77. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395

    CAS  PubMed  Google Scholar 

  78. Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122:1919–1929

    CAS  PubMed  Google Scholar 

  79. Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:e1000809

    Article  PubMed Central  PubMed  Google Scholar 

  80. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschke P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22:1191–1207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554

    CAS  PubMed  Google Scholar 

  82. Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, Gupta I, McHugh K, Bates CM (2010) High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol 183:2077–2084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415

    Article  CAS  PubMed  Google Scholar 

  85. Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B (2009) The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol 335:106–119

    Article  CAS  PubMed  Google Scholar 

  86. Gerber SD, Amann R, Wyder S, Trueb B (2012) Comparison of the gene expression profiles from normal and Fgfrl1 deficient mouse kidneys reveals downstream targets of Fgfrl1 signaling. PloS One 7:e33457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Katherine Stewart for her critical review of the manuscript. MB’s laboratory is supported by grants from the Canadian Institutes for Health Research (MOP-130431) and by the Kidney Foundation of Canada. MB holds a Canada Research Chair in Developmental Genetics of the Urogenital System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Bouchard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcotte, M., Sharma, R. & Bouchard, M. Gene regulatory network of renal primordium development. Pediatr Nephrol 29, 637–644 (2014). https://doi.org/10.1007/s00467-013-2635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2635-0

Keywords

Navigation