Skip to main content
Log in

The bioartificial kidney: current status and future promise

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The rapid understanding of the cellular and molecular bases of organ function and disease processes will be translated in the next decade into new therapeutic approaches to a wide range of clinical disorders, including acute and chronic renal failure. Central to these new therapies are the developing technologies of cell therapy and tissue engineering, which are based on the ability to expand stem or progenitor cells in tissue culture to perform differentiated tasks and to introduce these cells into the patient either via extracorporeal circuits or as implantable constructs. Cell therapy devices are currently being developed to replace the filtrative, metabolic, and endocrinologic functions of the kidney lost in both acute and chronic renal failure. This review summarizes the current state of development of a wearable or implantable bioartificial kidney. These devices have the promise to be combined to produce a wearable or implantable bioartificial kidney for full renal replacement therapy that may significantly diminish morbidity and mortality in patients with acute or chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pino CJ, Humes HD (2010) Stem cell technology for the treatment of acute and chronic renal failure. Transl Res 156(3):161–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fissell WH, Fleischman AJ, Humes HD, Roy S (2007) Development of continuous implantable renal replacement: past and future. Transl Res 150(6):327–336

    Article  PubMed  Google Scholar 

  3. Johnston K, Humes HD (2011) Extracorporeal renal replacement. In: Principles of regenerative medicine, second edition. Elsevier, Ann Arbor, MI, pp. 943–953

  4. Roy S, Goldman K, Marchant R, Zydney A, Brown D, Fleischman A, Conlisk A, Desai T, Duffy S, Humes H, Fissell W (2011) Implanted renal replacement for end-stage renal disease. Panminerva Med 53(3):155–166

    CAS  PubMed  Google Scholar 

  5. MacKay SM, Funke AJ, Buffington DA, Humes HD (1998) Tissue engineering of a bioartificial renal tubule. ASAIO J 44:179–183

    Article  CAS  PubMed  Google Scholar 

  6. Nikolovski J, Gulari E, Humes HD (1999) Design engineering of a bioartificial renal tubule cell therapy device. Cell Transplant 8(4):351–364

    CAS  PubMed  Google Scholar 

  7. Humes HD, Cieslinski DA (1992) Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res 201:8–15

    Article  CAS  PubMed  Google Scholar 

  8. Humes HD, Krauss JC, Cieslinski DA, Funke AJ (1996) Tubulogenesis from isolated single cells of adult mammalian kidney: clonal analysis with a recombinant retrovirus. Am J Physiol 271(40):F42–F49

    CAS  PubMed  Google Scholar 

  9. O’Neil JJ, Stegemann JP, Nicholson DT, Mullon CJ-P, Maki T, Monaco AP, Solomon BA (1997) Immunoprotection provided by the bioartificial pancreas in a xenogeneic host. Transplant Proc 29:2116–2117

    Article  PubMed  Google Scholar 

  10. Humes HD, MacKay SM, Funke AJ, Buffington DA (1999) Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 55:2502–2514

    Article  CAS  PubMed  Google Scholar 

  11. Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF (1999) Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17:451–455

    Article  CAS  PubMed  Google Scholar 

  12. Breen D, Bihari D (1998) Acute renal failure as a part of multiple organ failure: the slippery slope of critical illness. Kidney Int 66(Suppl):S25–S33

    CAS  Google Scholar 

  13. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock: relation to multiple-system organ failure and mortality. Chest 103:565–575

    Article  CAS  PubMed  Google Scholar 

  14. Thomas MK, Lloyd-Jones DM, Thadhani RI, Shaw AC, Deraska DJ, Kitch BT, Vamvakas EC, Dick IM, Prince RL, Finkelstein JS (1998) Hypovitaminosis D in medical inpatients. N Engl J Med 338:777–783

    Article  CAS  PubMed  Google Scholar 

  15. Fissell WH, Dyke DB, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, Gutierrez JM, Humes HD (2002) Bioartificial kidney alters cytokine response and hemodynamics in endotoxin-challenged uremic animals. Blood Purif 20:55–60

    Article  CAS  PubMed  Google Scholar 

  16. Fissell WH, Lou L, Abrishami S, Buffington DA, Humes HD (2003) Bioartificial kidney ameliorates Gram-negative bacteria-induced septic shock in uremic animals. J Am Soc Nephrol 14:454–461

    Article  PubMed  Google Scholar 

  17. Humes HD, Buffington DA, Lou L, Abrishami S, Wang M, Xia J, Fissell WH (2003) Cell therapy with a tissue-engineered kidney reduces the multiple-organ consequences of septic shock. Crit Care Med 31:2421–2428

    Article  CAS  PubMed  Google Scholar 

  18. Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR, Sobota J (2004) Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int 66:1578–1588

    Article  CAS  PubMed  Google Scholar 

  19. Tumlin J, Wali R, Brennan K, Humes HD (2008) Efficacy and safety of renal tubule therapy for acute renal failure. J Am Soc Nephrol 19:1034–1040

    Article  PubMed  Google Scholar 

  20. Humes HD, Sobota JT, Ding F, Song JH, The RAD Investigator Group (2010) A selective cytopheretic inhibitory device (SCD) to treat the immunologic dysregulation of acute and chronic renal failure. Blood Purif 29:183–190

    Article  PubMed  Google Scholar 

  21. Ding F, Yevzlin AS, Humes HD (2010) A selective cytopheretic inhibitory device (SCD) accelerates renal recovery and improves mortality in ICU patients with AKI and MOF in an exploratory clinical study. ASAIO J 56:140

    Article  Google Scholar 

  22. Tumlin JA, Chawla L, Tolwani AJ, Mehta R, Dillon J, Finkel KW, Dasilva JR, Astor BC, Yevzlin AS, Humes HD (2012) The effect of the selective cytopheretic device on acute kidney injury outcomes in the intensive care unit: a multicenter pilot study. Semin Dial. doi:10.1111/sdi.12032

    PubMed  Google Scholar 

  23. Pino CJ, Yevzlin AS, Lee K, Westover AJ, Smith PL, Buffington DA, Humes HD (2013) Cell-based approaches for the treatment of systemic inflammation. Nephrol Dial Transplant 28(2):296–302

    Article  CAS  PubMed  Google Scholar 

  24. Orive G, Hernández RM, Gascon AR, Calafiore R, Chang TM, DeVos P, Hortelano G, Hunkeler D, Lacík I, Shapiro AM, Pedraz JL (2003) Cell encapsulation: promise and progress. Nat Med 9:104–107

    Article  CAS  PubMed  Google Scholar 

  25. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Article  CAS  PubMed  Google Scholar 

  26. Westover AJ (2012) Enhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue-engineered therapeutic devices for renal disease. J Tissue Eng Regen Med 6(8):589–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Buffington DA, Pino CJ, Hageman GM, Chen L, Humes HD (2012) Bioartificial renal epithelial cell systems (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Transplant. doi:10.3727/215517911X653328

    Google Scholar 

  28. Pino CJ, Humes HD (2011) Bioartificial kidney: comprehensive biomaterials, vol 6. Elsevier, Oxford

    Google Scholar 

  29. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW, Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R (2002) Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347:2010–2019

    Article  PubMed  Google Scholar 

  30. Bologa RM, Levine DM, Parker TS, Cheigh JS, Serur D, Stenzel KH, Rubin AL (1998) Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 32:107–114

    Article  CAS  PubMed  Google Scholar 

  31. Gura V, Beizai M, Ezon C, Polaschegg HD (2005) Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib Nephrol 149:325

    Article  PubMed  Google Scholar 

  32. Roberts M, Ash SR, Lee DB (1999) Innovative peritoneal dialysis: flow-thru and dialysate regeneration. ASAIO J 45(5):372–378

    Article  CAS  PubMed  Google Scholar 

  33. Westover A, Buffington D, Jung J, Lou L, Rojas A, Charles L, Smith P, Johnston K, Pino C, Humes D (2010) Uremic ovine model of end-stage renal disease (ESRD) for the evaluation of the bioartificial renal epithelial cell system (BRECS) 3(abstract). J Am Soc Nephrol 21:201

    Google Scholar 

  34. Ash SR, Janie EM (1997) Continuous flow-through peritoneal dialysis (CFPD) comparison of efficiency to IPD, TPD, and CAPD in an animal model. Perit Dial Int 17:365–372

    CAS  PubMed  Google Scholar 

  35. Ronco C, Davenport A, Gura V (2008) A wearable artificial kidney: dream or reality? Nat Clin Pract Nephrol 4:604–605

    Article  PubMed  Google Scholar 

  36. Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2010) Permeability-selectivity analysis for ultrafiltration: effect of pore geometry. J Membr Sci 349:405–410

    Article  CAS  Google Scholar 

  37. Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S (2009) High-performance silicon nanopore hemofiltration membranes. J Membr Sci 326:58–63

    Article  CAS  Google Scholar 

  38. Groszek J, Li L, Ferrell N, Smith R, Zorman CA, Hofmann CL, Roy S, Fissell WH (2010) Molecular conformation and filtration properties of anionic Ficoll. Am J Physiol Renal Physiol 299:F752–F757

    Article  CAS  PubMed  Google Scholar 

  39. Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, Roy S (2011) Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng 39(4):1296–1305

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. David Humes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humes, H.D., Buffington, D., Westover, A.J. et al. The bioartificial kidney: current status and future promise. Pediatr Nephrol 29, 343–351 (2014). https://doi.org/10.1007/s00467-013-2467-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2467-y

Keywords

Navigation