Skip to main content

Advertisement

Log in

Disorders of calcium and magnesium balance: a physiology-based approach

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Disorders of calcium and magnesium balance are physiologically interesting and clinically challenging. In this review, we attempt to bridge the gap between physiology and practice by providing a physiology-based approach to understanding hypocalcemia, hypercalcemia and hypomagnesemia. Calcium and, to a lesser extent, magnesium balance is achieved through a complex interplay between the parathyroid gland, bone, the intestine and the kidney. Our understanding of the molecular physiology of calcium and magnesium balance has grown considerably following the discovery of the calcium-sensing receptor (CaSR) and the main intestinal and renal transporters for calcium and magnesium, namely, the transient receptor potential channels TRPV5, TRPV6 and TRPM6. The regulation of parathyroid hormone (PTH) secretion by CaSR and the subsequent effects of PTH and vitamin D on TRPV5 constitute an increasingly characterized regulatory loop. In contrast, no truly magnesiotropic hormones have been identified, although the recently established interactions between the epidermal growth factor and TRPM6 suggest a possible candidate. Overall, the aim of this review is to illustrate the clinical disorders of calcium and magnesium balance from the perspective of their integrated physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bindels RJ (2010) 2009 Homer W. Smith Award: minerals in motion: from new ion transporters to new concepts. J Am Soc Nephrol 21:1263–1269

    Article  CAS  PubMed  Google Scholar 

  2. Smogorzweski MJ, Rude RK, Yu ASL (2011) Disorders of calcium, magnesium, and phosphate balance. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM (eds) Brenner & Rector’s the kidney. Philadelphia, Saunders Elsevier, pp 689–714

  3. Moore EW (1970) Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes. J Clin Invest 49:318–334

    Article  CAS  PubMed  Google Scholar 

  4. Phillips P, Pain R (1977) Correcting the calcium. Br Med J 1:1473

    Article  CAS  PubMed  Google Scholar 

  5. Escuela MP, Guerra M, Anon JM, Martinez-Vizcaino V, Zapatero MD, Garcia-Jalon A, Celaya S (2005) Total and ionized serum magnesium in critically ill patients. Intensive Care Med 31:151–156

    Article  PubMed  Google Scholar 

  6. Arnaud MJ (2008) Update on the assessment of magnesium status. Br J Nutr 99[Suppl 3]:S24–S36

    CAS  PubMed  Google Scholar 

  7. Cox IM, Campbell MJ, Dowson D (1991) Red blood cell magnesium and chronic fatigue syndrome. Lancet 337:757–760

    Article  CAS  PubMed  Google Scholar 

  8. Clark BA, Brown RS (1992) Unsuspected morbid hypermagnesemia in elderly patients. Am J Nephrol 12:336–343

    Article  CAS  PubMed  Google Scholar 

  9. Coburn JW, Popovtzer MM, Massry SG, Kleeman CR (1969) The physicochemical state and renal handling of divalent ions in chronic renal failure. Arch Intern Med 124:302–311

    Article  CAS  PubMed  Google Scholar 

  10. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    Article  CAS  PubMed  Google Scholar 

  11. Huang CL, Kuo E (2007) Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 18:2649–2652

    Article  PubMed  Google Scholar 

  12. Touyz RM (2008) Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 294:H1103–H1118

    Article  PubMed  Google Scholar 

  13. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL (1999) Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 159:2151–2159

    Article  CAS  PubMed  Google Scholar 

  14. Van Laecke S, Van Biesen W, Verbeke F, De Bacquer D, Peeters P, Vanholder R (2009) Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am J Transplant 9:2140–2149

    Article  PubMed  Google Scholar 

  15. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81:51–84

    CAS  PubMed  Google Scholar 

  16. Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  17. Alexander RT, Hoenderop JG, Bindels RJ (2008) Molecular determinants of magnesium homeostasis: insights from human disease. J Am Soc Nephrol 19:1451–1458

    Article  CAS  PubMed  Google Scholar 

  18. Dimke H, Hoenderop JG, Bindels RJ (2011) Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J Physiol 589:1535–1542

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Thompson JR (2011) The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol 22:216–224

    Article  CAS  PubMed  Google Scholar 

  20. Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24:230–235

    Article  CAS  PubMed  Google Scholar 

  21. Shoback D (2008) Clinical practice. Hypoparathyroidism. N Engl J Med 359:391–403

    Article  CAS  PubMed  Google Scholar 

  22. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  23. Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T (2009) The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest 119:3102–3114

    Article  CAS  PubMed  Google Scholar 

  24. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed  Google Scholar 

  25. Bland R, Zehnder D, Hewison M (2000) Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase along the nephron: new insights into renal vitamin D metabolism. Curr Opin Nephrol Hypertens 9:17–22

    Article  CAS  PubMed  Google Scholar 

  26. Bouillon R, Van Cromphaut S, Carmeliet G (2003) Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 88:332–339

    Article  CAS  PubMed  Google Scholar 

  27. Perez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta Lopez ME, Tolosa de Talamoni NG (2008) Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion 77:22–34

    Article  CAS  PubMed  Google Scholar 

  28. Nijenhuis T, Hoenderop JG, Bindels RJ (2005) TRPV5 and TRPV6 in Ca(2+) (re)absorption: regulating Ca(2+) entry at the gate. Pflugers Arch 451:181–192

    Article  CAS  PubMed  Google Scholar 

  29. de Groot T, Lee K, Langeslag M, Xi Q, Jalink K, Bindels RJ, Hoenderop JG (2009) Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol 20:1693–1704

    Article  PubMed  Google Scholar 

  30. de Groot T, Kovalevskaya NV, Verkaart S, Schilderink N, Felici M, van der Hagen EA, Bindels RJ, Vuister GW, Hoenderop JG (2011) Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol Cell Biol 31:2845–2853

    Article  PubMed  Google Scholar 

  31. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197

    Article  CAS  PubMed  Google Scholar 

  32. Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20:1705–1713

    Article  CAS  PubMed  Google Scholar 

  33. Renkema KY, Bindels RJ, Hoenderop JG (2011) Role of the calcium-sensing receptor in reducing the risk for calcium stones. Clin J Am Soc Nephrol 6:2076–2082

    Article  CAS  PubMed  Google Scholar 

  34. Kato S (1999) Genetic mutation in the human 25-hydroxyvitamin D3 1alpha-hydroxylase gene causes vitamin D-dependent rickets type I. Mol Cell Endocrinol 156:7–12

    Article  CAS  PubMed  Google Scholar 

  35. Malloy PJ, Feldman D (2010) Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin N Am 39:333–346

    Article  CAS  Google Scholar 

  36. Quitterer U, Hoffmann M, Freichel M, Lohse MJ (2001) Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem 276:6763–6769

    Article  CAS  PubMed  Google Scholar 

  37. Vetter T, Lohse MJ (2002) Magnesium and the parathyroid. Curr Opin Nephrol Hypertens 11:403–410

    Article  PubMed  Google Scholar 

  38. McKnight RF, Adida M, Budge K, Stockton S, Goodwin GM, Geddes JR (2012) Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379:721–728

    Article  CAS  PubMed  Google Scholar 

  39. Jones G (2008) Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 88:582S–586S

    CAS  PubMed  Google Scholar 

  40. Jacobs TP, Bilezikian JP (2005) Clinical review: rare causes of hypercalcemia. J Clin Endocrinol Metab 90:6316–6322

    Article  CAS  PubMed  Google Scholar 

  41. Davies JH, Shaw NJ (2012) Investigation and management of hypercalcaemia in children. Arch Dis Child 97:533–538

    Article  PubMed  Google Scholar 

  42. Rodd C, Goodyer P (1999) Hypercalcemia of the newborn: etiology, evaluation, and management. Pediatr Nephrol 13:542–547

    Article  CAS  PubMed  Google Scholar 

  43. Aljaser F, Weinstein M (2008) A 1-week-old newborn with hypercalcemia and palpable nodules: subcutaneous fat necrosis. Can Med Assoc J 178:1653–1654

    Article  Google Scholar 

  44. Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116:878–891

    Article  CAS  PubMed  Google Scholar 

  45. Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    CAS  PubMed  Google Scholar 

  46. Himmerkus N, Shan Q, Goerke B, Hou J, Goodenough DA, Bleich M (2008) Salt and acid–base metabolism in claudin-16 knockdown mice: impact for the pathophysiology of FHHNC patients. Am J Physiol Renal Physiol 295:F1641–F1647

    Article  CAS  PubMed  Google Scholar 

  47. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  CAS  PubMed  Google Scholar 

  48. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  CAS  PubMed  Google Scholar 

  49. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  CAS  PubMed  Google Scholar 

  50. Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA 101:6009–6014

    Article  CAS  PubMed  Google Scholar 

  51. Cahalan MD (2001) Cell biology. Channels as enzymes. Nature 411:542–543

    Article  CAS  PubMed  Google Scholar 

  52. Whang R, Ryder KW (1990) Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA 263:3063–3064

    Article  CAS  PubMed  Google Scholar 

  53. Epstein M, McGrath S, Law F (2006) Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med 355:1834–1836

    Article  CAS  PubMed  Google Scholar 

  54. Hess MW, Hoenderop JG, Bindels RJ, Drenth JP (2012) Systematic review: hypomagnesaemia induced by proton pump inhibition. Aliment Pharmacol Ther 36:405–413

    Article  CAS  PubMed  Google Scholar 

  55. Hoorn EJ, van der Hoek J, de Man RA, Kuipers EJ, Bolwerk C, Zietse R (2010) A case series of proton pump inhibitor-induced hypomagnesemia. Am J Kidney Dis 56:112–116

    Article  PubMed  Google Scholar 

  56. Cundy T, Dissanayake A (2008) Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin Endocrinol (Oxf) 69:338–341

    Article  CAS  Google Scholar 

  57. Zietse R, Zoutendijk R, Hoorn EJ (2009) Fluid, electrolyte and acid–base disorders associated with antibiotic therapy. Nat Rev Nephrol 5:193–202

    Article  CAS  PubMed  Google Scholar 

  58. Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV, Bindels RJ (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267

    Article  CAS  PubMed  Google Scholar 

  59. Hoorn EJ, Walsh SB, McCormick JA, Furstenberg A, Yang CL, Roeschel T, Paliege A, Howie AJ, Conley J, Bachmann S, Unwin RJ, Ellison DH (2011) The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med 17:1304–1309

    Article  CAS  PubMed  Google Scholar 

  60. Nijenhuis T, Hoenderop JG, Bindels RJ (2004) Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 15:549–557

    Article  CAS  PubMed  Google Scholar 

  61. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658

    Article  CAS  PubMed  Google Scholar 

  62. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ (2009) EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 20:78–85

    Article  CAS  PubMed  Google Scholar 

  63. Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, Pappas P, Seibel N, Greenberg RN, Dummer S, Schuster M, Holcenberg JS (1999) Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 340:764–771

    Article  CAS  PubMed  Google Scholar 

  64. Sontia B, Montezano AC, Paravicini T, Tabet F, Touyz RM (2008) Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension 51:915–921

    Article  CAS  PubMed  Google Scholar 

  65. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van’t Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    Article  CAS  PubMed  Google Scholar 

  66. Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, Warth R, Reichold M (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 461:423–435

    Article  CAS  PubMed  Google Scholar 

  67. Glaudemans B, van der Wijst J, Scola RH, Lorenzoni PJ, Heister A, van der Kemp AW, Knoers NV, Hoenderop JG, Bindels RJ (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119:936–942

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewout J. Hoorn.

Additional information

Correct answers

1.c

2.c

3.a

4.d

5.c

Multiple choice questions (answers are provided following the reference list)

Multiple choice questions (answers are provided following the reference list)

  1. 1.

    Which hormone regulates magnesium balance?

    1. a.

      Parathyroid hormone

    2. b.

      Fibroblast growth factor 23 (FGF23)

    3. c.

      No hormones primarily regulating magnesium balance have been identified

    4. d.

      1,25-dihydroxyvitamin D

  2. 2.

    In which part of the kidney does active magnesium transport take place?

    1. a.

      Proximal tubule

    2. b.

      Thick ascending limb

    3. c.

      Distal convoluted tubule

    4. d.

      Collecting duct

  3. 3.

    A patient with hypocalcemia has a high PTH but normal concentrations of 25-monohydroxyvitamin D and 1,25-dihydroxyvitamin D. Which cause is unlikely?

    1. a.

      Chronic kidney disease stage 2 or 3

    2. b.

      Loss of calcium from the circulation (eg due to binding or chelation)

    3. c.

      Pseudohypoparathyroidism

    4. d.

      Hypomagnesemia

  4. 4.

    Why are hypomagnesemia and hypokalemia often found together?

    1. a.

      Hypomagnesemia causes hypokalemia by stimulating potassium secretion

    2. b.

      Hypokalemia causes hypomagnesemia by stimulating magnesium excretion

    3. c.

      The same factors that cause hypokalemia often also cause hypomagnesemia

    4. d.

      Answers a and c are correct

    5. e.

      Answers b and c are correct

  5. 5.

    Which laboratory parameter can be used to differentiate Bartter syndrome from Gitelman syndrome?

    1. a.

      Serum potassium concentration

    2. b.

      Serum magnesium concentration

    3. c.

      Urinary calcium excretion

    4. d.

      Urinary sodium excretion

Correct answers

  1. 1.

    c

  2. 2.

    c

  3. 3.

    a

  4. 4.

    e

  5. 5.

    c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoorn, E.J., Zietse, R. Disorders of calcium and magnesium balance: a physiology-based approach. Pediatr Nephrol 28, 1195–1206 (2013). https://doi.org/10.1007/s00467-012-2350-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2350-2

Keywords

Navigation