Skip to main content

Advertisement

Log in

Autoantibodies in systemic lupus erythematosus

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a multifactorial disorder with multigenic inheritance and various environmental factors implicated in its aetiopathogenesis. Despite the multiple mechanisms involved in the aetiology of SLE being elusive, recent studies have made progress in our understanding of the pathogenic mechanisms via abnormal regulation of cell-mediated and humoral immunity that lead to tissue damage. The heterogeneity of the clinical manifestations probably reflects the complexity of the disease pathogenesis itself. The immune system in SLE is characterised by a complex interplay between overactive B cells, abnormally activated T cells and antigen-presenting cells. This interplay leads to the production of an array of inflammatory cytokines, apoptotic cells, diverse autoantibodies and immune complexes that in turn activate effector cells and the complement system, leading to tissue injury and damage which are the hallmarks of the clinical manifestations. SLE patients have dysregulation of inflammatory cytokines, chemokines and immune response-related genes, as well as of the genes involved in apoptosis, signal transduction and the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kyttaris VC, Katsiari CG, Juang YT, Tsokos GC (2005) New insights into the pathogenesis of systemic lupus erythematosus. Curr Rheumatol Rep 7:469–475

    Article  PubMed  CAS  Google Scholar 

  2. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533

    Article  PubMed  CAS  Google Scholar 

  3. Demirci FY, Manzi S, Ramsey-Goldman R, Kenney M, Shaw PS, Dunlop-Thomas CM, Kao AH, Rhew EY, Bontempo F, Kammerer C, Kamboh MI (2007) Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J Rheumatol 34:1708–1711

    PubMed  CAS  Google Scholar 

  4. Sanchez E, Callejas-Rubio JL, Sabio JM, Gonzalez-Gay MA, Jimenez-Alonso J, Mico L, de Ramon E, Camps M, Suarez A, Gutierrez C, Garcia-Portales R, Tolosa C, Ortego-Centeno N, Sanchez-Roman J, Garcia-Hernandez FJ, Gonzalez-Escribano MF, Martin J (2009) Investigation of TLR5 and TLR7 as candidate genes for susceptibility to systemic lupus erythematosus. Clin Exp Rheumatol 27:267–271

    PubMed  CAS  Google Scholar 

  5. Hochberg MC (1987) Prevalence of systemic lupus erythematosus in England and Wales, 1981–2. Ann Rheum Dis 46:664–666

    Article  PubMed  CAS  Google Scholar 

  6. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, Walker A, Mack TM (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35:311–318

    Article  PubMed  CAS  Google Scholar 

  7. Kelly JA, Moser KL, Harley JB (2002) The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun 3(Suppl 1):S71–S85

    Article  PubMed  CAS  Google Scholar 

  8. Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456

    Article  PubMed  CAS  Google Scholar 

  9. Tsao BP (2003) The genetics of human systemic lupus erythematosus. Trends Immunol 24:595–602

    Article  PubMed  CAS  Google Scholar 

  10. Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Gaffney PM, Edberg JC, Rioux JD, Ojwang JO, James JA, Merrill JT, Gilkeson GS, Seldin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210

    Article  PubMed  CAS  Google Scholar 

  11. Jarvinen TM, Hellquist A, Zucchelli M, Koskenmies S, Panelius J, Hasan T, Julkunen H, D'Amato M, Kere J (2011) Replication of genome-wide association study identified systemic lupus erythematosus susceptibility genes affirms B-cell receptor pathway signalling and strengthens the role of IRF5 in disease susceptibility in a Northern European population. Rheumatology (Oxford). doi:10.1093/rheumatology/ker263

  12. Zhou XJ, Lu XL, Nath SK, Lv JC, Zhu SN, Yang HZ, Qin LX, Zhao MH, Su Y, Shen N, Li ZG, Zhang H (2011) Gene–gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3. REL in systemic lupus erythematosus. Arthritis Rheum. doi:10.1002/art.33318

  13. Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ (2000) Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76:227–324

    Article  PubMed  CAS  Google Scholar 

  14. Seelen MA, Trouw LA, Daha MR (2003) Diagnostic and prognostic significance of anti-C1q antibodies in systemic lupus erythematosus. Curr Opin Nephrol Hypertens 12:619–624

    Article  PubMed  Google Scholar 

  15. Trouw LA, Groeneveld TW, Seelen MA, Duijs JM, Bajema IM, Prins FA, Kishore U, Salant DJ, Verbeek JS, van Kooten C, Daha MR (2004) Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J Clin Invest 114:679–688

    PubMed  CAS  Google Scholar 

  16. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, Lipsky PE, Radbruch A, Dorner T (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165:5970–5979

    PubMed  CAS  Google Scholar 

  17. Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE (1998) Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med 188:1691–1703

    Article  PubMed  CAS  Google Scholar 

  18. Leandro MJ, Edwards JC, Cambridge G, Ehrenstein MR, Isenberg DA (2002) An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum 46:2673–2677

    Article  PubMed  Google Scholar 

  19. Leandro MJ, Cambridge G, Edwards JC, Ehrenstein MR, Isenberg DA (2005) B-cell depletion in the treatment of patients with systemic lupus erythematosus: a longitudinal analysis of 24 patients. Rheumatology (Oxford) 44:1542–1545

    Article  CAS  Google Scholar 

  20. Shlomchik MJ, Craft JE, Mamula MJ (2001) From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 1:147–153

    Article  PubMed  CAS  Google Scholar 

  21. Tsokos GC, Nambiar MP, Tenbrock K, Juang YT (2003) Rewiring the T-cell: signaling defects and novel prospects for the treatment of SLE. Trends Immunol 24:259–263

    Article  PubMed  CAS  Google Scholar 

  22. Tsokos GC, Mitchell JP, Juang YT (2003) T cell abnormalities in human and mouse lupus: intrinsic and extrinsic. Curr Opin Rheumatol 15:542–547

    Article  PubMed  CAS  Google Scholar 

  23. Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I (2000) Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 18:565–570

    Article  PubMed  CAS  Google Scholar 

  24. Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A (1999) Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 190:815–826

    Article  PubMed  CAS  Google Scholar 

  25. Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL (2001) Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 159:237–243

    Article  PubMed  CAS  Google Scholar 

  26. Cooper GS, Parks CG (2004) Occupational and environmental exposures as risk factors for systemic lupus erythematosus. Curr Rheumatol Rep 6:367–374

    Article  PubMed  Google Scholar 

  27. Incaprera M, Rindi L, Bazzichi A, Garzelli C (1998) Potential role of the Epstein–Barr virus in systemic lupus erythematosus autoimmunity. Clin Exp Rheumatol 16:289–294

    PubMed  CAS  Google Scholar 

  28. Moon UY, Park SJ, Oh ST, Kim WU, Park SH, Lee SH, Cho CS, Kim HY, Lee WK, Lee SK (2004) Patients with systemic lupus erythematosus have abnormally elevated Epstein–Barr virus load in blood. Arthritis Res Ther 6:R295–R302

    Article  PubMed  CAS  Google Scholar 

  29. James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, Harley JB (2001) Systemic lupus erythematosus in adults is associated with previous Epstein–Barr virus exposure. Arthritis Rheum 44:1122–1126

    Article  PubMed  CAS  Google Scholar 

  30. Crow MK (2003) Interferon-alpha: a new target for therapy in systemic lupus erythematosus? Arthritis Rheum 48:2396–2401

    Article  PubMed  CAS  Google Scholar 

  31. Anders HJ, Banas B, Schlondorff D (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15:854–867

    Article  PubMed  CAS  Google Scholar 

  32. Brummel R, Lenert P (2005) Activation of marginal zone B cells from lupus mice with type A(D) CpG-oligodeoxynucleotides. J Immunol 174:2429–2434

    PubMed  CAS  Google Scholar 

  33. Gilkeson GS, Pippen AM, Pisetsky DS (1995) Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest 95:1398–1402

    Article  PubMed  CAS  Google Scholar 

  34. Hasegawa K, Hayashi T (2003) Synthetic CpG oligodeoxynucleotides accelerate the development of lupus nephritis during preactive phase in NZB × NZWF1 mice. Lupus 12:838–845

    Article  PubMed  CAS  Google Scholar 

  35. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  PubMed  CAS  Google Scholar 

  36. Lenert P, Goeken A, Handwerger BS, Ashman RF (2003) Innate immune responses in lupus-prone Palmerston North mice: differential responses to LPS and bacterial DNA/CpG oligonucleotides. J Clin Immunol 23:202–213

    Article  PubMed  CAS  Google Scholar 

  37. Cline AM, Radic MZ (2004) Murine lupus autoantibodies identify distinct subsets of apoptotic bodies. Autoimmunity 37:85–93

    Article  PubMed  CAS  Google Scholar 

  38. Cline AM, Radic MZ (2004) Apoptosis, subcellular particles, and autoimmunity. Clin Immunol 112:175–182

    Article  PubMed  CAS  Google Scholar 

  39. Cocca BA, Cline AM, Radic MZ (2002) Blebs and apoptotic bodies are B cell autoantigens. J Immunol 169:159–166

    PubMed  CAS  Google Scholar 

  40. Laderach D, Koutouzov S, Bach JF, Yamamoto AM (2003) Concomitant early appearance of anti-ribonucleoprotein and anti-nucleosome antibodies in lupus prone mice. J Autoimmun 20:161–170

    Article  PubMed  CAS  Google Scholar 

  41. Lorenz HM, Herrmann M, Winkler T, Gaipl U, Kalden JR (2000) Role of apoptosis in autoimmunity. Apoptosis 5:443–449

    Article  PubMed  CAS  Google Scholar 

  42. Malmegrim KC, Pruijn GJ, van Venrooij WJ (2002) The fate of the U1 snRNP autoantigen during apoptosis: implications for systemic autoimmunity. Isr Med Assoc J 4:706–712

    PubMed  CAS  Google Scholar 

  43. Ohlsson M, Jonsson R, Brokstad KA (2002) Subcellular redistribution and surface exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells: a possible mechanism in the pathogenesis of Sjögren's syndrome. Scand J Immunol 56:456–469

    Article  PubMed  CAS  Google Scholar 

  44. Purcell AW, Todd A, Kinoshita G, Lynch TA, Keech CL, Gething MJ, Gordon TP (2003) Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin Exp Immunol 132:193–200

    Article  PubMed  CAS  Google Scholar 

  45. Rosen A, Casciola-Rosen L (1999) Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ 6:6–12

    Article  PubMed  CAS  Google Scholar 

  46. Tran HB, Ohlsson M, Beroukas D, Hiscock J, Bradley J, Buyon JP, Gordon TP (2002) Subcellular redistribution of la/SSB autoantigen during physiologic apoptosis in the fetal mouse heart and conduction system: a clue to the pathogenesis of congenital heart block. Arthritis Rheum 46:202–208

    Article  PubMed  CAS  Google Scholar 

  47. Tran HB, Macardle PJ, Hiscock J, Cavill D, Bradley J, Buyon JP, Gordon TP (2002) Anti-La/SSB antibodies transported across the placenta bind apoptotic cells in fetal organs targeted in neonatal lupus. Arthritis Rheum 46:1572–1579

    Article  PubMed  CAS  Google Scholar 

  48. Nossent JC, Henzen-Logmans SC, Vroom TM, Huysen V, Berden JH, Swaak AJ (1991) Relation between serological data at the time of biopsy and renal histology in lupus nephritis. Rheumatol Int 11:77–82

    Article  PubMed  CAS  Google Scholar 

  49. Norsworthy P, Theodoridis E, Botto M, Athanassiou P, Beynon H, Gordon C, Isenberg D, Walport MJ, Davies KA (1999) Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 42:1828–1832

    Article  PubMed  CAS  Google Scholar 

  50. Coremans IE, Daha MR, van der Voort EA, Siegert CE, Breedveld FC (1995) Subclass distribution of IgA and IgG antibodies against Clq in patients with rheumatic diseases. Scand J Immunol 41:391–397

    Article  PubMed  CAS  Google Scholar 

  51. Coremans IE, Spronk PE, Bootsma H, Daha MR, van der Voort EA, Kater L, Breedveld FC, Kallenberg CG (1995) Changes in antibodies to C1q predict renal relapses in systemic lupus erythematosus. Am J Kidney Dis 26:595–601

    Article  PubMed  CAS  Google Scholar 

  52. Moroni G, Trendelenburg M, Del Papa N, Quaglini S, Raschi E, Panzeri P, Testoni C, Tincani A, Banfi G, Balestrieri G, Schifferli JA, Meroni PL, Ponticelli C (2001) Anti-C1q antibodies may help in diagnosing a renal flare in lupus nephritis. Am J Kidney Dis 37:490–498

    Article  PubMed  CAS  Google Scholar 

  53. Mannik M, Wener MH (1997) Deposition of antibodies to the collagen-like region of C1q in renal glomeruli of patients with proliferative lupus glomerulonephritis. Arthritis Rheum 40:1504–1511

    Article  PubMed  CAS  Google Scholar 

  54. Holers VM (2004) Anti-C1q autoantibodies amplify pathogenic complement activation in systemic lupus erythematosus. J Clin Invest 114:616–619

    PubMed  CAS  Google Scholar 

  55. Okamura M, Kanayama Y, Amastu K, Negoro N, Kohda S, Takeda T, Inoue T (1993) Significance of enzyme linked immunosorbent assay (ELISA) for antibodies to double stranded and single stranded DNA in patients with lupus nephritis: correlation with severity of renal histology. Ann Rheum Dis 52:14–20

    Article  PubMed  CAS  Google Scholar 

  56. Bosma GC, Oshinsky J, Kiefer K, Nakajima PB, Charan D, Congelton C, Radic M, Bosma MJ (2006) Development of functional B cells in a line of SCID mice with transgenes coding for anti-double-stranded DNA antibody. J Immunol 176:889–898

    PubMed  CAS  Google Scholar 

  57. Ravirajan CT, Rahman MA, Papadaki L, Griffiths MH, Kalsi J, Martin AC, Ehrenstein MR, Latchman DS, Isenberg DA (1998) Genetic, structural and functional properties of an IgG DNA-binding monoclonal antibody from a lupus patient with nephritis. Eur J Immunol 28:339–350

    Article  PubMed  CAS  Google Scholar 

  58. Mason LJ, Ravirajan CT, Latchman DS, Isenberg DA (2001) A human anti-dsDNA monoclonal antibody caused hyaline thrombi formation in kidneys of ‘leaky’ SCID mice. Clin Exp Immunol 126:137–142

    Article  PubMed  CAS  Google Scholar 

  59. Bave U, Alm GV, Ronnblom L (2000) The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Immunol 165:3519–3526

    PubMed  CAS  Google Scholar 

  60. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  61. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20

    Article  PubMed  Google Scholar 

  62. Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7:691–6990

    Google Scholar 

  63. Wellmann U, Letz M, Herrmann M, Angermuller S, Kalden JR, Winkler TH (2005) The evolution of human anti-double-stranded DNA autoantibodies. Proc Natl Acad Sci USA 102:9258–9263

    Article  PubMed  CAS  Google Scholar 

  64. Cardiel MH, Tumlin JA, Furie RA, Wallace DJ, Joh T, Linnik MD (2008) Abetimus sodium for renal flare in systemic lupus erythematosus: results of a randomized, controlled phase III trial. Arthritis Rheum 58:2470–2480

    Article  PubMed  CAS  Google Scholar 

  65. Duzgun N, Hoier-Madsen M, Wiik A, Tokgoz G (1997) The frequency of autoantibodies in Turkish patients with lupus nephritis. Rheumatol Int 17:1–4

    Article  PubMed  CAS  Google Scholar 

  66. Minota S, Yoshio T, Iwamoto M, Takeda A, Masuyama J, Mimori A, Yamada A, Kano S (1996) Selective accumulation of anti-histone antibodies in glomeruli of lupus-prone lpr mice. Clin Immunol Immunopathol 80:82–87

    Article  PubMed  CAS  Google Scholar 

  67. Elouaai F, Lule J, Benoist H, Appolinaire-Pilipenko S, Atanassov C, Muller S, Fournie GJ (1994) Autoimmunity to histones, ubiquitin, and ubiquitinated histone H2A in NZB x NZW and MRL-lpr/lpr mice. Anti-histone antibodies are concentrated in glomerular eluates of lupus mice. Nephrol Dial Transplant 9:362–366

    PubMed  CAS  Google Scholar 

  68. Van Bruggen MC, Kramers C, Berden JH (1996) Autoimmunity against nucleosomes and lupus nephritis. Ann Med Interne (Paris) 147:485–489

    Google Scholar 

  69. Amoura Z, Piette JC, Bach JF, Koutouzov S (1999) The key role of nucleosomes in lupus. Arthritis Rheum 42:833–843

    Article  PubMed  CAS  Google Scholar 

  70. Burlingame RW, Boey ML, Starkebaum G, Rubin RL (1994) The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J Clin Invest 94:184–192

    Article  PubMed  CAS  Google Scholar 

  71. Massa M, De Benedetti F, Pignatti P, Albani S, Di Fuccia G, Monestier M, Martini A (1994) Anti-double stranded DNA, anti-histone, and anti-nucleosome IgG reactivities in children with systemic lupus erythematosus. Clin Exp Rheumatol 12:219–225

    PubMed  CAS  Google Scholar 

  72. Amoura Z, Chabre H, Koutouzov S, Lotton C, Cabrespines A, Bach JF, Jacob L (1994) Nucleosome-restricted antibodies are detected before anti-dsDNA and/or antihistone antibodies in serum of MRL-Mp lpr/lpr and +/+ mice, and are present in kidney eluates of lupus mice with proteinuria. Arthritis Rheum 37:1684–1688

    Article  PubMed  CAS  Google Scholar 

  73. Kramers C, Hylkema MN, Van Bruggen MC, van de Lagemaat R, Dijkman HB, Assmann KJ, Smeenk RJ, Berden JH (1994) Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J Clin Invest 94:568–577

    Article  PubMed  CAS  Google Scholar 

  74. Schmiedeke T, Stoeckl F, Muller S, Sugisaki Y, Batsford S, Woitas R, Vogt A (1992) Glomerular immune deposits in murine lupus models may contain histones. Clin Exp Immunol 90:453–458

    Article  PubMed  CAS  Google Scholar 

  75. Stockl F, Schmiedeke T, Batsford S, Vogt A (1992) Histone-mediated DNA binding in lupus nephritis. Arthritis Rheum 35:367–368

    Article  PubMed  CAS  Google Scholar 

  76. Van Bruggen MC, Kramers K, Hylkema MN, van den Born J, Bakker MA, Assmann KJ, Smeenk RJ, Berden JH (1995) Decrease of heparan sulfate staining in the glomerular basement membrane in murine lupus nephritis. Am J Pathol 146:753–763

    PubMed  Google Scholar 

  77. Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86:69–74

    Article  PubMed  CAS  Google Scholar 

  78. Licht R, Van Bruggen MC, Oppers-Walgreen B, Rijke TP, Berden JH (2001) Plasma levels of nucleosomes and nucleosome-autoantibody complexes in murine lupus: effects of disease progression and lipopolyssacharide administration. Arthritis Rheum 44:1320–1330

    Article  PubMed  CAS  Google Scholar 

  79. Williams RC Jr, Malone CC, Meyers C, Decker P, Muller S (2001) Detection of nucleosome particles in serum and plasma from patients with systemic lupus erythematosus using monoclonal antibody 4H7. J Rheumatol 28:81–94

    PubMed  CAS  Google Scholar 

  80. Burlingame RW, Rubin RL, Balderas RS, Theofilopoulos AN (1993) Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self antigen. J Clin Invest 91:1687–1696

    Article  PubMed  CAS  Google Scholar 

  81. Lu Q, Kanai Y, Kubota T (2003) The emergence of anti-dsDNA antibodies precedes nucleosome-specific antibodies in MRL/lpr and MRL/+ mice. J Med Dent Sci 50:9–15

    PubMed  Google Scholar 

  82. Meziere C, Stockl F, Batsford S, Vogt A, Muller S (1994) Antibodies to DNA, chromatin core particles and histones in mice with graft-versus-host disease and their involvement in glomerular injury. Clin Exp Immunol 98:287–294

    Article  PubMed  CAS  Google Scholar 

  83. Sato S, Kodera M, Hasegawa M, Fujimoto M, Takehara K (2004) Antinucleosome antibody is a major autoantibody in localized scleroderma. Br J Dermatol 151:1182–1188

    Article  PubMed  CAS  Google Scholar 

  84. Suer W, Dahnrich C, Schlumberger W, Stocker W (2004) Autoantibodies in SLE but not in scleroderma react with protein-stripped nucleosomes. J Autoimmun 22:325–334

    Article  PubMed  CAS  Google Scholar 

  85. Radic M, Marion T, Monestier M (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172:6692–6700

    PubMed  CAS  Google Scholar 

  86. Kaliyaperumal A, Michaels MA, Datta SK (2002) Naturally processed chromatin peptides reveal a major autoepitope that primes pathogenic T and B cells of lupus. J Immunol 168:2530–2537

    PubMed  CAS  Google Scholar 

  87. Lu L, Kaliyaperumal A, Boumpas DT, Datta SK (1999) Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest 104:345–355

    Article  PubMed  CAS  Google Scholar 

  88. Fournel S, Neichel S, Dali H, Farci S, Maillere B, Briand JP, Muller S (2003) CD4+ T cells from (New Zealand Black x New Zealand White)F1 lupus mice and normal mice immunized against apoptotic nucleosomes recognize similar Th cell epitopes in the C terminus of histone H3. J Immunol 171:636–644

    PubMed  CAS  Google Scholar 

  89. Kaliyaperumal A, Mohan C, Wu W, Datta SK (1996) Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med 183:2459–2469

    Article  PubMed  CAS  Google Scholar 

  90. Suen JL, Chuang YH, Tsai BY, Yau PM, Chiang BL (2004) Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum 50:3250–3259

    Article  PubMed  CAS  Google Scholar 

  91. Kaliyaperumal A, Michaels MA, Datta SK (1999) Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol 162:5775–5783

    PubMed  CAS  Google Scholar 

  92. Bonfa E, Elkon KB (1986) Clinical and serologic associations of the antiribosomal P protein antibody. Arthritis Rheum 29:981–985

    Article  PubMed  CAS  Google Scholar 

  93. Bonfa E, Golombek SJ, Kaufman LD, Skelly S, Weissbach H, Brot N, Elkon KB (1987) Association between lupus psychosis and anti-ribosomal P protein antibodies. N Engl J Med 317:265–271

    Article  PubMed  CAS  Google Scholar 

  94. Isshi K, Hirohata S (1996) Association of anti-ribosomal P protein antibodies with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 39:1483–1490

    Article  PubMed  CAS  Google Scholar 

  95. Schneebaum AB, Singleton JD, West SG, Blodgett JK, Allen LG, Cheronis JC, Kotzin BL (1991) Association of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am J Med 90:54–62

    Article  PubMed  CAS  Google Scholar 

  96. Tzioufas AG, Tzortzakis NG, Panou-Pomonis E, Boki KA, Sakarellos-Daitsiotis M, Sakarellos C, Moutsopoulos HM (2000) The clinical relevance of antibodies to ribosomal-P common epitope in two targeted systemic lupus erythematosus populations: a large cohort of consecutive patients and patients with active central nervous system disease. Ann Rheum Dis 59:99–104

    Article  PubMed  CAS  Google Scholar 

  97. Watanabe T, Sato T, Uchiumi T, Arakawa M (1996) Neuropsychiatric manifestations in patients with systemic lupus erythematosus: diagnostic and predictive value of longitudinal examination of anti-ribosomal P antibody. Lupus 5:178–183

    Article  PubMed  CAS  Google Scholar 

  98. Yoshio T, Hirata D, Onda K, Nara H, Minota S (2005) Antiribosomal P protein antibodies in cerebrospinal fluid are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol 32:34–39

    PubMed  CAS  Google Scholar 

  99. Derksen RH, van Dam AP, Gmelig Meyling FH, Bijlsma JW, Smeenk RJ (1990) A prospective study on antiribosomal P proteins in two cases of familial lupus and recurrent psychosis. Ann Rheum Dis 49:779–782

    Article  PubMed  CAS  Google Scholar 

  100. Gerli R, Caponi L, Tincani A, Scorza R, Sabbadini MG, Danieli MG, De Angelis V, Cesarotti M, Piccirilli M, Quartesan R, Moretti P, Cantoni C, Franceschini F, Cavazzana I, Origgi L, Vanoli M, Bozzolo E, Ferrario L, Padovani A, Gambini O, Vanzulli L, Croce D, Bombardieri S (2002) Clinical and serological associations of ribosomal P autoantibodies in systemic lupus erythematosus: prospective evaluation in a large cohort of Italian patients. Rheumatology (Oxford) 41:1357–1366

    Article  CAS  Google Scholar 

  101. Ghirardello A, Doria A, Zampieri S, Gerli R, Rapizzi E, Gambari PF (2000) Anti-ribosomal P protein antibodies detected by immunoblotting in patients with connective tissue diseases: their specificity for SLE and association with IgG anticardiolipin antibodies. Ann Rheum Dis 59:975–981

    Article  PubMed  CAS  Google Scholar 

  102. Chindalore V, Neas B, Reichlin M (1998) The association between anti-ribosomal P antibodies and active nephritis in systemic lupus erythematosus. Clin Immunol Immunopathol 87:292–296

    Article  PubMed  CAS  Google Scholar 

  103. Grunebaum E, Blank M, Cohen S, Afek A, Kopolovic J, Meroni PL, Youinou P, Shoenfeld Y (2002) The role of anti-endothelial cell antibodies in Kawasaki disease—in vitro and in vivo studies. Clin Exp Immunol 130:233–240

    Article  PubMed  CAS  Google Scholar 

  104. Tseng JC, Lu LY, Hu RJ, Kau CK, Cheng HH, Lin PR, Sun CW, Liang HT, Lam HC, Tai MH (2007) Elevated serum anti-endothelial cell autoantibodies titer is associated with lupus nephritis in patients with systemic lupus erythematosus. J Microbiol Immunol Infect 40:50–55

    PubMed  CAS  Google Scholar 

  105. Aringer M, Smolen JS (2005) Cytokine expression in lupus kidneys. Lupus 14:13–18

    Article  PubMed  CAS  Google Scholar 

  106. Scuderi F, Convertino R, Molino N, Provenzano C, Marino M, Zoli A, Bartoccioni E (2003) Effect of pro-inflammatory/anti-inflammatory agents on cytokine secretion by peripheral blood mononuclear cells in rheumatoid arthritis and systemic lupus erythematosus. Autoimmunity 36:71–77

    Article  PubMed  CAS  Google Scholar 

  107. Hill N, Sarvetnick N (2002) Cytokines: promoters and dampeners of autoimmunity. Curr Opin Immunol 14:791–797

    Article  PubMed  CAS  Google Scholar 

  108. Sung YK, Park BL, Shin HD, Kim LH, Kim SY, Bae SC (2006) Interleukin-10 gene polymorphisms are associated with the SLICC/ACR Damage Index in systemic lupus erythematosus. Rheumatology (Oxford) 45:400–404

    Article  CAS  Google Scholar 

  109. Tucci M, Calvani N, Richards HB, Quatraro C, Silvestris F (2005) The interplay of chemokines and dendritic cells in the pathogenesis of lupus nephritis. Ann N Y Acad Sci 1051:421–432

    Article  PubMed  CAS  Google Scholar 

  110. Lin L, Peng SL (2005) Interleukin-18 receptor signaling is not required for autoantibody production and end-organ disease in murine lupus. Arthritis Rheum 52:984–986

    Article  PubMed  CAS  Google Scholar 

  111. Calvani N, Richards HB, Tucci M, Pannarale G, Silvestris F (2004) Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clin Exp Immunol 138:171–178

    Article  PubMed  CAS  Google Scholar 

  112. Qing X, Putterman C (2004) Gene expression profiling in the study of the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 3:505–509

    Article  PubMed  CAS  Google Scholar 

  113. Schwarting A, Paul K, Tschirner S, Menke J, Hansen T, Brenner W, Kelley VR, Relle M, Galle PR (2005) Interferon-beta: a therapeutic for autoimmune lupus in MRL-Faslpr mice. J Am Soc Nephrol 16:3264–3272

    Article  PubMed  CAS  Google Scholar 

  114. Hueber W, Zeng D, Strober S, Utz PJ (2004) Interferon-alpha-inducible proteins are novel autoantigens in murine lupus. Arthritis Rheum 50:3239–3249

    Article  PubMed  CAS  Google Scholar 

  115. Gu L, Tseng SC, Rollins BJ (1999) Monocyte chemoattractant protein-1. Chem Immunol 72:7–29

    Article  PubMed  CAS  Google Scholar 

  116. Jiang Y, Beller DI, Frendl G, Graves DT (1992) Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J Immunol 148:2423–2428

    PubMed  CAS  Google Scholar 

  117. Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ (1989) Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169:1485–1490

    Article  PubMed  CAS  Google Scholar 

  118. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 91:3652–3656

    Article  PubMed  CAS  Google Scholar 

  119. Dunzendorfer S, Kaneider NC, Kaser A, Woell E, Frade JM, Mellado M, Martinez-Alonso C, Wiedermann CJ (2001) Functional expression of chemokine receptor 2 by normal human eosinophils. J Allergy Clin Immunol 108:581–587

    Article  PubMed  CAS  Google Scholar 

  120. Heinemann A, Hartnell A, Stubbs VE, Murakami K, Soler D, LaRosa G, Askenase PW, Williams TJ, Sabroe I (2000) Basophil responses to chemokines are regulated by both sequential and cooperative receptor signaling. J Immunol 165:7224–7233

    PubMed  CAS  Google Scholar 

  121. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–327

    PubMed  CAS  Google Scholar 

  122. Chan RW, Lai FM, Li EK, Tam LS, Chow KM, Lai KB, Li PK, Szeto CC (2007) Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis 66:886–892

    Article  PubMed  CAS  Google Scholar 

  123. Furutani Y, Nomura H, Notake M, Oyamada Y, Fukui T, Yamada M, Larsen CG, Oppenheim JJ, Matsushima K (1989) Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem Biophys Res Commun 159:249–255

    Article  PubMed  CAS  Google Scholar 

  124. Hasegawa H, Kohno M, Sasaki M, Inoue A, Ito MR, Terada M, Hieshima K, Maruyama H, Miyazaki J, Yoshie O, Nose M, Fujita S (2003) Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice. Arthritis Rheum 48:2555–2566

    Article  PubMed  CAS  Google Scholar 

  125. Shimizu S, Nakashima H, Masutani K, Inoue Y, Miyake K, Akahoshi M, Tanaka Y, Egashira K, Hirakata H, Otsuka T, Harada M (2004) Anti-monocyte chemoattractant protein-1 gene therapy attenuates nephritis in MRL/lpr mice. Rheumatology (Oxford) 43:1121–1128

    Article  CAS  Google Scholar 

  126. Shimizu S, Nakashima H, Karube K, Ohshima K, Egashira K (2005) Monocyte chemoattractant protein-1 activates a regional Th1 immunoresponse in nephritis of MRL/lpr mice. Clin Exp Rheumatol 23:239–242

    PubMed  CAS  Google Scholar 

  127. Rovin BH, Song H, Birmingham DJ, Hebert LA, Yu CY, Nagaraja HN (2005) Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J Am Soc Nephrol 16:467–473

    Article  PubMed  CAS  Google Scholar 

  128. Chan RW, Lai FM, Li EK, Tam LS, Wong TY, Szeto CY, Li PK, Szeto CC (2004) Expression of chemokine and fibrosing factor messenger RNA in the urinary sediment of patients with lupus nephritis. Arthritis Rheum 50:2882–2890

    Article  PubMed  CAS  Google Scholar 

  129. Tucci M, Barnes EV, Sobel ES, Croker BP, Segal MS, Reeves WH, Richards HB (2004) Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis Rheum 50:1842–1849

    Article  PubMed  CAS  Google Scholar 

  130. Liao CH, Yao TC, Chung HT, See LC, Kuo ML, Huang JL (2004) Polymorphisms in the promoter region of RANTES and the regulatory region of monocyte chemoattractant protein-1 among Chinese children with systemic lupus erythematosus. J Rheumatol 31:2062–2067

    PubMed  CAS  Google Scholar 

  131. Wagrowska-Danilewicz M, Stasikowska O, Danilewicz M (2005) Correlative insights into immunoexpression of monocyte chemoattractant protein-1, transforming growth factor beta-1 and CD68+ cells in lupus nephritis. Pol J Pathol 56:115–120

    PubMed  CAS  Google Scholar 

  132. Marks SD, Williams SJ, Tullus K, Sebire NJ (2008) Glomerular expression of monocyte chemoattractant protein-1 is predictive of poor renal prognosis in pediatric lupus nephritis. Nephrol Dial Transplant 23:3521–3526

    Article  PubMed  CAS  Google Scholar 

  133. Marks SD, Shah V, Pilkington C, Tullus K (2010) Urinary monocyte chemoattractant protein-1 correlates with disease activity in lupus nephritis. Pediatr Nephrol 25:2283–2288

    Article  PubMed  Google Scholar 

  134. Zoja C, Liu XH, Donadelli R, Abbate M, Testa D, Corna D, Taraboletti G, Vecchi A, Dong QG, Rollins BJ, Bertani T, Remuzzi G (1997) Renal expression of monocyte chemoattractant protein-1 in lupus autoimmune mice. J Am Soc Nephrol 8:720–729

    PubMed  CAS  Google Scholar 

  135. Dai C, Liu Z, Zhou H, Li L (2001) Monocyte chemoattractant protein-1 expression in renal tissue is associated with monocyte recruitment and tubulo-interstitial lesions in patients with lupus nephritis. Chin Med J (Engl) 114:864–868

    CAS  Google Scholar 

  136. Murali NS, Ackerman AW, Croatt AJ, Cheng J, Grande JP, Sutor SL, Bram RJ, Bren GD, Badley AD, Alam J, Nath KA (2007) Renal upregulation of HO-1 reduces albumin-driven MCP-1 production: implications for chronic kidney disease. Am J Physiol Renal Physiol 292:F837–F844

    Article  PubMed  CAS  Google Scholar 

  137. Hill GS, Delahousse M, Nochy D, Mandet C, Bariety J (2001) Proteinuria and tubulointerstitial lesions in lupus nephritis. Kidney Int 60:1893–1903

    Article  PubMed  CAS  Google Scholar 

  138. Kim HL, Lee DS, Yang SH, Lim CS, Chung JH, Kim S, Lee JS, Kim YS (2002) The polymorphism of monocyte chemoattractant protein-1 is associated with the renal disease of SLE. Am J Kidney Dis 40:1146–1152

    Article  PubMed  CAS  Google Scholar 

  139. Nakashima H, Akahoshi M, Shimizu S, Inoue Y, Miyake K, Ninomiya I, Igawa T, Sadanaga A, Otsuka T, Harada M (2004) Absence of association between the MCP-1 gene polymorphism and histological phenotype of lupus nephritis. Lupus 13:165–167

    Article  PubMed  CAS  Google Scholar 

  140. Ohtsuka K, Gray JD, Stimmler MM, Horwitz DA (1999) The relationship between defects in lymphocyte production of transforming growth factor-beta1 in systemic lupus erythematosus and disease activity or severity. Lupus 8:90–94

    Article  PubMed  CAS  Google Scholar 

  141. De Muro P, Faedda R, Fresu P, Masala A, Cigni A, Concas G, Mela MG, Satta A, Carcassi A, Sanna GM, Cherchi GM (2004) Urinary transforming growth factor-beta 1 in various types of nephropathy. Pharmacol Res 49:293–298

    Article  PubMed  CAS  Google Scholar 

  142. Chan RW, Lai FM, Li EK, Tam LS, Chow KM, Li PK, Szeto CC (2006) The effect of immunosuppressive therapy on the messenger RNA expression of target genes in the urinary sediment of patients with active lupus nephritis. Nephrol Dial Transplant 21:1534–1540

    Article  PubMed  CAS  Google Scholar 

  143. Wahl SM, Chen W (2005) Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res Ther 7:62–68

    Article  PubMed  CAS  Google Scholar 

  144. Schotte H, Willeke P, Rust S, Assmann G, Domschke W, Gaubitz M, Schluter B (2003) The transforming growth factor-beta1 gene polymorphism (G915C) is not associated with systemic lupus erythematosus. Lupus 12:86–92

    Article  PubMed  CAS  Google Scholar 

  145. Schiffer M, Schiffer LE, Gupta A, Shaw AS, Roberts IS, Mundel P, Bottinger EP (2002) Inhibitory smads and tgf-Beta signaling in glomerular cells. J Am Soc Nephrol 13:2657–2666

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Marks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, S.D., Tullus, K. Autoantibodies in systemic lupus erythematosus. Pediatr Nephrol 27, 1855–1868 (2012). https://doi.org/10.1007/s00467-011-2078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-2078-4

Keywords

Navigation