Skip to main content

Advertisement

Log in

Investigating mechanisms of chronic kidney disease in mouse models

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Animal models of chronic kidney disease (CKD) are important experimental tools that are used to investigate novel mechanistic pathways and to validate potential new therapeutic interventions prior to pre-clinical testing in humans. Over the past several years, mouse CKD models have been extensively used for these purposes. Despite significant limitations, the model of unilateral ureteral obstruction (UUO) has essentially become the high-throughput in vivo model, as it recapitulates the fundamental pathogenetic mechanisms that typify all forms of CKD in a relatively short time span. In addition, several alternative mouse models are available that can be used to validate new mechanistic paradigms and/or novel therapies. Here, we review several models—both genetic and experimentally induced—that provide investigators with an opportunity to include renal functional study end-points together with quantitative measures of fibrosis severity, something that is not possible with the UUO model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Risdon RA, Sloper JC, de Vardener HE (1968) Relationship between renal function and histologic changes found in renal-biopsy specimens from patients with persistent glomerulonephritis. Lancet 2:363–366

    Article  PubMed  CAS  Google Scholar 

  2. Oda T, Jung YO, Kim H, Cai X, Lopez-Guisa J, Ikeda Y, Eddy AA (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 60:587–596

    Article  PubMed  CAS  Google Scholar 

  3. Jones CL, Buch S, Post M, McCulloch L, Liu E, Eddy AA (1991) The pathogenesis of interstitial fibrosis in chronic purine aminonucleoside nephrosis. Kidney Int 40:1020–1031

    Article  PubMed  CAS  Google Scholar 

  4. Farris AB, Adams CD, Brousaides N, Della Pelle PA, Collins AB, Moradi E, Smith RN, Grimm PC, Colvin RB (2011) Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol 22:176–186

    Article  PubMed  Google Scholar 

  5. Fogo AB, Alpers CE (2011) Navigating the challenges of fibrosis assessment: land in sight? J Am Soc Nephrol 22:11–13

    Article  PubMed  Google Scholar 

  6. Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245–F253

    Article  PubMed  CAS  Google Scholar 

  7. López-Guisa JM, Bugge TH, Isacke CH, Collins S, Cai S, Eddy AA (2008) Endo180/uPAR-associated protein is an important regular of renal fibrogenesis. J Am Soc Nephrol 19:32A

    Google Scholar 

  8. Eddy AA (2005) Progression in chronic kidney disease. Adv Chronic Kidney Dis 12:353–365

    Article  PubMed  Google Scholar 

  9. Socha MJ, Manhiani M, Said N, Imig JD, Motamed K (2007) Secreted protein acidic and rich in cysteine deficiency ameliorates renal inflammation and fibrosis in angiotensin hypertension. Am J Pathol 171:1104–1112

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Guisa JM, Rassa AC, Cai X, Collins SJ, Eddy AA (2011) Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease. Am J Physiol Renal Physiol 300:F1244–F1254

    Article  PubMed  CAS  Google Scholar 

  11. Schaefer L, Mihalik D, Babelova A, Krzyzankova M, Grone HJ, Iozzo RV, Young MF, Seidler DG, Lin G, Reinhardt DP, Schaefer RM (2004) Regulation of fibrillin-1 by biglycan and decorin is important for tissue preservation in the kidney during pressure-induced injury. Am J Pathol 165:383–396

    Article  PubMed  CAS  Google Scholar 

  12. Breyer MD, Bottinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, Sharma K (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45

    Article  PubMed  Google Scholar 

  13. Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13[Suppl 1]:S14–S21

    PubMed  CAS  Google Scholar 

  14. Matsuo S, Lopez-Guisa JM, Cai X, Okamura DM, Alpers CE, Bumgarner RE, Peters MA, Zhang G, Eddy AA (2005) Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int 67:2221–2238

    Article  PubMed  CAS  Google Scholar 

  15. Holthofer H (1983) Lectin binding sites in kidney. A comparative study of 14 animal species. J Histochem Cytochem 31:531–537

    Article  PubMed  CAS  Google Scholar 

  16. Michael L, Sweeney DE, Davies JA (2007) The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system. J Anat 210:89–97

    Article  PubMed  CAS  Google Scholar 

  17. Mackensen-Haen S, Bohle A, Christensen J, Wehrmann M, Kendziorra H, Kokot F (1992) The consequences for renal function of widening of the interstitium and changes in the tubular epithelium of the renal cortex and outer medulla in various renal diseases. Clin Nephrol 37:70–77

    PubMed  CAS  Google Scholar 

  18. Tchao BN, Burger ML, Eddy AA, Yamaguchi I (2010) Vascular endothelial cadherin in the progression of renal interstitial fibrosis (abstract). E-PAS2010:1562.96

  19. Eddy AA, Neilson EG (2006) Chronic kidney disease progression. J Am Soc Nephrol 17:2964–2966

    Article  PubMed  Google Scholar 

  20. Zhang G, Eddy AA (2008) Urokinase and its receptors in chronic kidney disease. Front Biosci 13:5462–5478

    Article  PubMed  CAS  Google Scholar 

  21. Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176:1767–1778

    Article  PubMed  CAS  Google Scholar 

  22. Mimura I, Nangaku M (2010) The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6:667–678

    Article  PubMed  CAS  Google Scholar 

  23. Okamura DM, Pennathur S, Pasichnyk K, Lopez-Guisa JM, Collins S, Febbraio M, Heinecke J, Eddy AA (2009) CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol 20:495–505

    Article  PubMed  CAS  Google Scholar 

  24. Puri TS, Shakaib MI, Chang A, Mathew L, Olayinka O, Minto AW, Sarav M, Hack BK, Quigg RJ (2010) Chronic kidney disease induced in mice by reversible unilateral ureteral obstruction is dependent on genetic background. Am J Physiol Renal Physiol 298:F1024–F1032

    Article  PubMed  CAS  Google Scholar 

  25. Kim W, Moon SO, Lee SY, Jang KY, Cho CH, Koh GY, Choi KS, Yoon KH, Sung MJ, Kim DH, Lee S, Kang KP, Park SK (2006) COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model. J Am Soc Nephrol 17:2474–2483

    Article  PubMed  CAS  Google Scholar 

  26. Miner JH, Sanes JR (1996) Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol 135:1403–1413

    Article  PubMed  CAS  Google Scholar 

  27. Hahm K, Lukashev ME, Luo Y, Yang WJ, Dolinski BM, Weinreb PH, Simon KJ, Chun Wang L, Leone DR, Lobb RR, McCrann DJ, Allaire NE, Horan GS, Fogo A, Kalluri R, Shield CF 3rd, Sheppard D, Gardner HA, Violette SM (2007) Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am J Pathol 170:110–125

    Article  PubMed  CAS  Google Scholar 

  28. Cosgrove D, Meehan DT, Delimont D, Pozzi A, Chen X, Rodgers KD, Tempero RM, Zallocchi M, Rao VH (2008) Integrin alpha1beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. Am J Pathol 172:761–773

    Article  PubMed  CAS  Google Scholar 

  29. Zeisberg M, Khurana M, Rao VH, Cosgrove D, Rougier JP, Werner MC, Shield CF 3rd, Werb Z, Kalluri R (2006) Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med 3:e100

    Article  PubMed  Google Scholar 

  30. Gross O, Girgert R, Beirowski B, Kretzler M, Kang HG, Kruegel J, Miosge N, Busse AC, Segerer S, Vogel WF, Muller GA, Weber M (2010) Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biol 29:346–356

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Sakurai T, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M (2010) Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 120:768–777

    Article  PubMed  CAS  Google Scholar 

  32. Gross O, Beirowski B, Koepke ML, Kuck J, Reiner M, Addicks K, Smyth N, Schulze-Lohoff E, Weber M (2003) Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int 63:438–446

    Article  PubMed  CAS  Google Scholar 

  33. Jarad G, Cunningham J, Shaw AS, Miner JH (2006) Proteinuria precedes podocyte abnormalities inLamb2−/− mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest 116:2272–2279

    Article  PubMed  CAS  Google Scholar 

  34. Wilson PD (2008) Mouse models of polycystic kidney disease. Curr Top Dev Biol 84:311–350

    Article  PubMed  CAS  Google Scholar 

  35. Okada H, Ban S, Nagao S, Takahashi H, Suzuki H, Neilson EG (2000) Progressive renal fibrosis in murine polycystic kidney disease: An immunohistochemical observation. Kidney Int 58:587–597

    Article  PubMed  CAS  Google Scholar 

  36. Kulkarni O, Anders HJ (2008) Chemokines in lupus nephritis. Front Biosci 13:3312–3320

    Article  PubMed  CAS  Google Scholar 

  37. Bao L, Zhou J, Holers VM, Quigg RJ (2003) Excessive matrix accumulation in the kidneys of MRL/lpr lupus mice is dependent on complement activation. J Am Soc Nephrol 14:2516–2525

    Article  PubMed  CAS  Google Scholar 

  38. Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, Mathur BN, Turner CA, Geske R, Montgomery CA, Starbuck M, Brandt M, Gupta A, Ramirez-Solis R, Zambrowicz BP, Powell DR (2001) Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol 21:4829–4836

    Article  PubMed  CAS  Google Scholar 

  39. Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632

    Article  PubMed  CAS  Google Scholar 

  40. Nevo N, Chol M, Bailleux A, Kalatzis V, Morisset L, Devuyst O, Gubler MC, Antignac C (2010) Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrol Dial Transplant 25:1059–1066

    Article  PubMed  CAS  Google Scholar 

  41. D'Agati VD (2008) Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts). Kidney Int 73:399–406

    Article  PubMed  Google Scholar 

  42. El-Aouni C, Herbach N, Blattner SM, Henger A, Rastaldi MP, Jarad G, Miner JH, Moeller MJ, St-Arnaud R, Dedhar S, Holzman LB, Wanke R, Kretzler M (2006) Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J Am Soc Nephrol 17:1334–1344

    Article  PubMed  CAS  Google Scholar 

  43. Harris DP, Vogel P, Wims M, Moberg K, Humphries J, Jhaver KG, DaCosta CM, Shadoan MK, Xu N, Hansen GM, Balakrishnan S, Domin J, Powell DR, Oravecz T (2011) Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function. Mol Cell Biol 31:63–80

    Article  PubMed  CAS  Google Scholar 

  44. Ichikawa I, Ma J, Motojima M, Matsusaka T (2005) Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens 14:205–210

    Article  PubMed  Google Scholar 

  45. Madaio MP, Ahima RS, Meade R, Rader DJ, Mendoza A, Peng M, Tomaszewski JE, Hancock WW, Gasser DL (2005) Glomerular and tubular epithelial defects in kd/kd mice lead to progressive renal failure. Am J Nephrol 25:604–610

    Article  PubMed  Google Scholar 

  46. Peng M, Jarett L, Meade R, Madaio MP, Hancock WW, George AL Jr, Neilson EG, Gasser DL (2004) Mutant prenyltransferase-like mitochondrial protein (PLMP) and mitochondrial abnormalities in kd/kd mice. Kidney Int 66:20–28

    Article  PubMed  CAS  Google Scholar 

  47. Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, Fujimori T, Xie P, Kanwar YS (2007) Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci USA 104:2331–2336

    Article  PubMed  CAS  Google Scholar 

  48. Taniguchi K, Sugiyama F, Kakinuma Y, Uehara S, Nishijho N, Tanimoto K, Murakami K, Fukamizu A, Yagami KI (1998) Pathologic characterization of hypotensive C57BL/6 J-agt: angiotensinogen-deficient C57BL/6 J mice. Int J Mol Med 1:583–587

    PubMed  CAS  Google Scholar 

  49. Lye CM, Fasano L, Woolf AS (2010) Ureter myogenesis: putting Teashirt into context. J Am Soc Nephrol 21:24–30

    Article  PubMed  CAS  Google Scholar 

  50. Ingraham SE, Saha M, Carpenter AR, Robinson M, Ismail I, Singh S, Hains D, Robinson ML, Hirselj DA, Koff SA, Bates CM, McHugh KM (2010) Pathogenesis of renal Injury in the megabladder mouse: a genetic model of congenital obstructive nephropathy. Pediatr Res. doi:10.1203/PDR.0b013e3181f82f15

  51. Cain JE, Rosenblum ND (2010) Control of mammalian kidney development by the Hedgehog signaling pathway. Pediatr Nephrol. doi:10.1007/s00467-010-1704-x

  52. Si H, Banga RS, Kapitsinou P, Ramaiah M, Lawrence J, Kambhampati G, Gruenwald A, Bottinger E, Glicklich D, Tellis V, Greenstein S, Thomas DB, Pullman J, Fazzari M, Susztak K (2009) Human and murine kidneys show gender- and species-specific gene expression differences in response to injury. PLoS One 4:e4802

    Article  PubMed  Google Scholar 

  53. Kren S, Hostetter TH (1999) The course of the remnant kidney model in mice. Kidney Int 56:333–337

    Article  PubMed  CAS  Google Scholar 

  54. Ma LJ, Fogo AB (2003) Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 64:350–355

    Article  PubMed  Google Scholar 

  55. Leelahavanichkul A, Yan Q, Hu X, Eisner C, Huang Y, Chen R, Mizel D, Zhou H, Wright EC, Kopp JB, Schnermann J, Yuen PS, Star RA (2010) Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int 78:1136–1153

    Article  PubMed  CAS  Google Scholar 

  56. Wang Y, Wang YP, Tay YC, Harris DC (2000) Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int 58:1797–1804

    Article  PubMed  CAS  Google Scholar 

  57. Papeta N, Zheng Z, Schon EA, Brosel S, Altintas MM, Nasr SH, Reiser J, D'Agati VD, Gharavi AG (2010) Prkdc participates in mitochondrial genome maintenance and prevents Adriamycin-induced nephropathy in mice. J Clin Invest 120:4055–4064

    Article  PubMed  CAS  Google Scholar 

  58. Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VW, Zheng G, Tan TK, Ince J, Alexander SI, Harris DC (2010) IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol 21:933–942

    Article  PubMed  CAS  Google Scholar 

  59. Klein J, Gonzalez J, Decramer S, Bandin F, Neau E, Salant DJ, Heeringa P, Pesquero JB, Schanstra JP, Bascands JL (2010) Blockade of the kinin B1 receptor ameliorates glomerulonephritis. J Am Soc Nephrol 21:1157–1164

    Article  PubMed  Google Scholar 

  60. Menke J, Lucas JA, Zeller GC, Keir ME, Huang XR, Tsuboi N, Mayadas TN, Lan HY, Sharpe AH, Kelley VR (2007) Programmed death 1 ligand (PD-L) 1 and PD-L2 limit autoimmune kidney disease: distinct roles. J Immunol 179:7466–7477

    PubMed  CAS  Google Scholar 

  61. Xie C, Liu K, Fu Y, Qin X, Jonnala G, Wang T, Wang HW, Maldonado M, Zhou XJ, Mohan C (2011) RANTES deficiency attenuates autoantibody-induced glomerulonephritis. J Clin Immunol 31:128–135

    Google Scholar 

  62. Giorgini A, Brown HJ, Sacks SH, Robson MG (2010) Toll-like receptor 4 stimulation triggers crescentic glomerulonephritis by multiple mechanisms including a direct effect on renal cells. Am J Pathol 177:644–653

    Article  PubMed  CAS  Google Scholar 

  63. Turner JE, Paust HJ, Steinmetz OM, Peters A, Meyer-Schwesinger C, Heymann F, Helmchen U, Fehr S, Horuk R, Wenzel U, Kurts C, Mittrucker HW, Stahl RA, Panzer U (2008) CCR5 deficiency aggravates crescentic glomerulonephritis in mice. J Immunol 181:6546–6556

    PubMed  CAS  Google Scholar 

  64. Ohse T, Vaughan MR, Kopp JB, Krofft RD, Marshall CB, Chang AM, Hudkins KL, Alpers CE, Pippin JW, Shankland SJ (2010) De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am J Physiol Renal Physiol 298:F702–F711

    Article  PubMed  CAS  Google Scholar 

  65. Collins SJ, Alexander SL, Lopez-Guisa JM, Cai X, Maruvada R, Chua SC, Zhang G, Okamura DM, Matsuo S, Eddy AA (2006) Plasminogen activator inhibitor-1 deficiency has renal benefits but some adverse systemic consequences in diabetic mice. Nephron 104:e23–e34

    Article  PubMed  CAS  Google Scholar 

  66. Brosius FC 3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, Levi M, McIndoe RA, Sharma K, Smithies O, Susztak K, Takahashi N, Takahashi T (2009) Mouse models of diabetic nephropathy. J Am Soc Nephrol 20:2503–2512

    Article  PubMed  Google Scholar 

  67. Sugimoto H, Grahovac G, Zeisberg M, Kalluri R (2007) Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56:1825–1833

    Article  PubMed  CAS  Google Scholar 

  68. Kosugi T, Heinig M, Nakayama T, Matsuo S, Nakagawa T (2010) eNOS knockout mice with advanced diabetic nephropathy have less benefit from renin-angiotensin blockade than from aldosterone receptor antagonists. Am J Pathol 176:619–629

    Article  PubMed  CAS  Google Scholar 

  69. Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, Muhlfeld A, Koelling M, Pippin JW, Shankland SJ, Askari B, Rabaglia ME, Keller MP, Attie AD, Alpers CE (2010) BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol 21:1533–1542

    Article  PubMed  CAS  Google Scholar 

  70. Eddy AA, Kim H, Lopez-Guisa J, Oda T, Soloway PD (2000) Interstitial fibrosis in mice with overload proteinuria: deficiency of TIMP-1 is not protective. Kidney Int 58:618–628

    Article  PubMed  CAS  Google Scholar 

  71. Gan PY, Steinmetz OM, Tan DS, O'Sullivan KM, Ooi JD, Iwakura Y, Kitching AR, Holdsworth SR (2010) Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol 21:925–931

    Article  PubMed  CAS  Google Scholar 

  72. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298

    Article  PubMed  CAS  Google Scholar 

  73. Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y, Maeda N, Falk RJ, Jennette JC (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963

    PubMed  CAS  Google Scholar 

  74. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Cordoba SR, Botto M (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med 204:1249–1256

    Article  PubMed  CAS  Google Scholar 

  75. de Jorge EG, Macor P, Paixao-Cavalcante D, Rose KL, Tedesco F, Cook HT, Botto M, Pickering MC (2011) The development of atypical hemolytic uremic syndrome depends on complement C5. J Am Soc Nephrol 22:137–145

    Article  PubMed  Google Scholar 

  76. Doi K, Okamoto K, Negishi K, Suzuki Y, Nakao A, Fujita T, Toda A, Yokomizo T, Kita Y, Kihara Y, Ishii S, Shimizu T, Noiri E (2006) Attenuation of folic acid-induced renal inflammatory injury in platelet-activating factor receptor-deficient mice. Am J Pathol 168:1413–1424

    Article  PubMed  CAS  Google Scholar 

  77. Koziolek MJ, Muller GA, Zapf A, Patschan D, Schmid H, Cohen CD, Koschnick S, Vasko R, Bramlage C, Strutz F (2010) Role of CX3C-chemokine CX3C-L/fractalkine expression in a model of slowly progressive renal failure. Nephrol Dial Transplant 25:684–698

    Article  PubMed  CAS  Google Scholar 

  78. Yokoyama T, Kamijo-Ikemori A, Sugaya T, Hoshino S, Yasuda T, Kimura K (2009) Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol 174:2096–2106

    Article  PubMed  CAS  Google Scholar 

  79. Yuan HT, Li XZ, Pitera JE, Long DA, Woolf AS (2003) Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor-A and hypoxia-inducible factor-1 alpha. Am J Pathol 163:2289–2301

    Article  PubMed  CAS  Google Scholar 

  80. Zhou L, Fu P, Huang XR, Liu F, Chung AC, Lai KN, Lan HY (2010) Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol 298:F1006–F1017

    Article  PubMed  CAS  Google Scholar 

  81. Linkermann A, Himmerkus N, Rolver L, Keyser KA, Steen P, Brasen JH, Bleich M, Kunzendorf U, Krautwald S (2011) Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney Int 79:169–178

    Article  PubMed  CAS  Google Scholar 

  82. Triverio PA, Martin PY, Romand J, Pugin J, Perneger T, Saudan P (2009) Long-term prognosis after acute kidney injury requiring renal replacement therapy. Nephrol Dial Transplant 24:2186–2189

    Article  PubMed  Google Scholar 

  83. Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordonez JD, Hsu CY (2009) Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int 76:893–899

    Article  PubMed  CAS  Google Scholar 

  84. Lafrance JP, Djurdjev O, Levin A (2010) Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol Dial Transplant 25:2203–2209

    Article  PubMed  Google Scholar 

  85. Liu KD (2010) Acute kidney injury: is acute kidney injury a risk factor for long-term mortality? Nat Rev Nephrol 6:389–391

    Article  PubMed  Google Scholar 

  86. Kim J, Seok YM, Jung KJ, Park KM (2009) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 297:F461–F470

    Article  PubMed  CAS  Google Scholar 

  87. Hotta K, Sho M, Yamato I, Shimada K, Harada H, Akahori T, Nakamura S, Konishi N, Yagita H, Nonomura K, Nakajima Y (2011) Direct targeting of fibroblast growth factor-inducible 14 protein protects against renal ischemia reperfusion injury. Kidney Int 79:179–188

    Article  PubMed  CAS  Google Scholar 

  88. Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E (1992) Natural inhibitor of transforming growth factor-ß protects against scarring in experimental kidney disease. Nature 360:361–364

    Article  PubMed  CAS  Google Scholar 

  89. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75

    Article  PubMed  CAS  Google Scholar 

  90. Eddy AA (2005) Can renal fibrosis be reversed? Pediatr Nephrol 20:1369–1375

    Article  PubMed  Google Scholar 

  91. Wang X, Zhou Y, Tan R, Xiong M, He W, Fang L, Wen P, Jiang L, Yang J (2010) Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 299:F973–F982

    Article  PubMed  CAS  Google Scholar 

  92. Surendran K, Simon TC, Liapis H, McGuire JK (2004) Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int 65:2212–2222

    Article  PubMed  CAS  Google Scholar 

  93. Sakamaki Y, Sasamura H, Hayashi K, Ishiguro K, Takaishi H, Okada Y, D'Armiento JM, Saruta T, Itoh H (2010) Absence of gelatinase (MMP-9) or collagenase (MMP-13) attenuates Adriamycin-induced albuminuria and glomerulosclerosis. Nephron 115:e22–e32

    PubMed  CAS  Google Scholar 

  94. Cochrane AL, Kett MM, Samuel CS, Campanale NV, Anderson WP, Hume DA, Little MH, Bertram JF, Ricardo SD (2005) Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol 16:3623–3630

    Article  PubMed  CAS  Google Scholar 

  95. Tapmeier TT, Brown KL, Tang Z, Sacks SH, Sheerin NS, Wong W (2008) Reimplantation of the ureter after unilateral ureteral obstruction provides a model that allows functional evaluation. Kidney Int 73:885–889

    Article  PubMed  CAS  Google Scholar 

  96. Thornhill BA, Forbes MS, Marcinko ES, Chevalier RL (2007) Glomerulotubular disconnection in neonatal mice after relief of partial ureteral obstruction. Kidney Int 72:1103–1112

    Article  PubMed  CAS  Google Scholar 

  97. Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12:736–748

    PubMed  CAS  Google Scholar 

  98. Zhang G, Kim H, Cai X, Lopez-Guisa J, Alpers C, Liu Y, Carmeliet P, Eddy A (2003) Urokinase receptor deficiency accelerates fibrosis in obstructive nephropathy. J Am Soc Nephrol 14:1254–1271

    Article  PubMed  CAS  Google Scholar 

  99. Yamaguchi I, Lopez-Guisa JM, Cai X, Collins SJ, Okamura DM, Eddy AA (2007) Endogenous urokinase lacks antifibrotic activity during progressive renal injury. Am J Physiol Renal Physiol 293:F12–F19

    Article  PubMed  CAS  Google Scholar 

  100. Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R, Glick AB, Hahnel B, Hosser H, Grone HJ, Kriz W (2010) Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol 177:632–643

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the research grants that have supported some of their own work that was cited: National Institutes of Health RO1DK54500 and P50DK44757 (AAE), K08DK073497 and RO3DK083648 (DO), K08DK080926 (IY), R03DK58925 (J L-G), the National Kidney Foundation Young Investigator Award (DO), the American Society of Nephrology Young Investigator Award (IY), Seattle Children’s Research Institute and the Robert O. Hickman Endowed Chair in Pediatric Nephrology. Several people contributed to our own studies that were cited in this review, including two talented research technicians (Xiaohe Cia and Sarah Collins) and several research fellows/visiting scientists (Drs. Takashi Oda, Heungsoo Kim, Guoqiang Zhang, Shunya Matsuo, and Masateru Yamada). We would like to acknowledge Dr. Shelia Violette and Dr. Kent Doi who provided high-resolution digital photomicrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison A. Eddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eddy, A.A., López-Guisa, J.M., Okamura, D.M. et al. Investigating mechanisms of chronic kidney disease in mouse models. Pediatr Nephrol 27, 1233–1247 (2012). https://doi.org/10.1007/s00467-011-1938-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1938-2

Keywords

Navigation