Skip to main content

Advertisement

Log in

Can renal fibrosis be reversed?

  • Editorial Commentary
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

New therapeutic approaches are needed to address the current epidemic of chronic kidney disease. Beyond delaying the inevitable onset of end-stage kidney disease the ultimate dream of clinical therapy is disease regression. Degradation of the interstitial matrix proteins is potentially feasible, especially before the interstitial “scar” becomes highly organized. Currently the specific matrix-degrading proteases that perform this function in vivo have not been clearly identified although several candidates have been suggested. Reversing renal fibrosis will also mandate removal of interstitial myofibroblasts that are the major source of the fibrosis-associated interstitial matrix proteins. However, the greater therapeutic challenge pertains to the current inability to regenerate intact functional nephrons in a site where they have been destroyed. In chronic tubulointerstitial damage that typifies all progressive kidney diseases, it is not interstitial matrix accumulation per se that leads to renal functional decline but rather its destructive effects on neighboring cells. In particular, loss of peritubular capillaries and tubules are the morphological features that underlie declining renal function. Recent advances in several basic scientific fields of investigation such as matrix biology, developmental biology, angiogenesis, and stem cell biology have identified new candidate therapeutic targets. A powerful new molecular tool-box is at our disposal that can be used to begin to translate recent discoveries into the clinical research arena with the goal of reversing renal fibrosis in a functionally meaningful way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA, Hostetter TH (2005) Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol 16:180–188

    Article  PubMed  Google Scholar 

  2. Meguid El Nahas A, Bello AK (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340

    PubMed  Google Scholar 

  3. Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301

    Article  CAS  PubMed  Google Scholar 

  4. Floege J, Johnson RJ, Gordon K, Iida H, Pritzl P, Yoshimura A, Campbell C, Alpers CE, Couser WG (1991) Increased synthesis of extracellular matrix in mesangial proliferative nephritis. Kidney Int 40:477–488

    CAS  PubMed  Google Scholar 

  5. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75

    Article  CAS  PubMed  Google Scholar 

  6. Boffa JJ, Lu Y, Placier S, Stefanski A, Dussaule JC, Chatziantoniou C (2003) Regression of renal vascular and glomerular fibrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. J Am Soc Nephrol 14:1132–1144

    Article  CAS  PubMed  Google Scholar 

  7. Adamczak M, Gross ML, Amann K, Ritz E (2004) Reversal of glomerular lesions involves coordinated restructuring of glomerular microvasculature. J Am Soc Nephrol 15:3063–3072

    Article  PubMed  Google Scholar 

  8. Ma LJ, Nakamura S, Aldigier JC, Rossini M, Yang H, Liang X, Nakamura I, Marcantoni C, Fogo AB (2005) Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J Am Soc Nephrol 16:966–976

    Article  CAS  PubMed  Google Scholar 

  9. Forbes JM, Hewitson TD, Becker GJ, Jones CL (2000) Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57:2375–2385

    Article  CAS  PubMed  Google Scholar 

  10. Jones CL, Buch S, Post M, McCulloch L, Liu E, Eddy AA (1992) Renal extracellular matrix accumulation in acute puromycin aminonucleoside nephrosis in rats. Am J Pathol 141:1381–1396

    CAS  PubMed  Google Scholar 

  11. Koo JW, Kim Y, Rozen S, Mauer M (2003) Enalapril accelerates remodeling of the renal interstitium after release of unilateral ureteral obstruction in rats. J Nephrol 16:203–209

    Article  CAS  PubMed  Google Scholar 

  12. Sund S, Grimm P, Reisaeter AV, Hovig T (2004) Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis. Nephrol Dial Transplant 19:2838–2845

    Google Scholar 

  13. Wiggins R, Goyal M, Merritt S, Killen PD (1993) Vascular adventitial cell expression of collagen I messenger ribonucleic acid in anti-glomerular basement membrane antibody-induced crescentic nephritis in the rabbit. A cellular source for interstitial collagen synthesis in inflammatory renal disease. Lab Invest 68:557–565

    CAS  PubMed  Google Scholar 

  14. Chai Q, Krag S, Chai S, Ledet T, Wogensen L (2003) Localisation and phenotypical characterisation of collagen-producing cells in TGF-beta1-induced renal interstitial fibrosis. Histochem Cell Biol 119:267–280

    CAS  PubMed  Google Scholar 

  15. Iwano M, Fischer A, Okada H, Plieth D, Xue C, Danoff TM, Neilson EG (2001) Conditional abatement of tissue fibrosis using nucleoside analogs to selectively corrupt DNA replication in transgenic fibroblasts. Mol Ther 3:149–159

    Article  CAS  PubMed  Google Scholar 

  16. Vittal R, Horowitz JC, Moore BB, Zhang H, Martinez FJ, Toews GB, Standiford TJ, Thannickal VJ (2005) Modulation of prosurvival signaling in fibroblasts by a protein kinase inhibitor protects against fibrotic tissue injury. Am J Pathol 166:367–375

    PubMed  Google Scholar 

  17. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  18. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    Article  CAS  PubMed  Google Scholar 

  19. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    Article  CAS  PubMed  Google Scholar 

  20. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65

    Article  CAS  PubMed  Google Scholar 

  21. Friedman SL (2005) Mac the knife? Macrophages—the double-edged sword of hepatic fibrosis. J Clin Invest 115:29–32

    Article  CAS  PubMed  Google Scholar 

  22. Zhang G, Kim H, Cai X, Lopez-Guisa J, Alpers C, Liu Y, Carmeliet P, Eddy A (2003) Urokinase receptor deficiency accelerates fibrosis in obstructive nephropathy. J Am Soc Nephrol 14:1254–1271

    Article  CAS  PubMed  Google Scholar 

  23. Nishida M, Fujinaka H, Matsusaka T, Price J, Kon V, Fogo AB, Davidson JM, Linton MF, Fazio S, Homma T, Yoshida H, Ichikawa I (2002) Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest 110:1859–1868

    Article  CAS  PubMed  Google Scholar 

  24. Tamaki K, Okuda S (2003) Role of TGF-beta in the progression of renal fibrosis. Contrib Nephrol 139:44–65

    CAS  PubMed  Google Scholar 

  25. Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15:255–273

    Article  CAS  PubMed  Google Scholar 

  26. Yokoi H, Mukoyama M, Nagae T, Mori K, Suganami T, Sawai K, Yoshioka T, Koshikawa M, Nishida T, Takigawa M, Sugawara A, Nakao K (2004) Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol 15:1430–1440

    Article  CAS  PubMed  Google Scholar 

  27. Okada H, Kikuta T, Kobayashi T, Inoue T, Kanno Y, Takigawa M, Sugaya T, Kopp JB, Suzuki H (2005) Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol 16:133–143

    Article  CAS  PubMed  Google Scholar 

  28. Zatz R, Fujihara CK (2002) Mechanisms of progressive renal disease: role of angiotensin II, cyclooxygenase products and nitric oxide. J Hypertens 20 Suppl 3:S37–S44

    Google Scholar 

  29. Eddy AA (2002) Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol 283:F209–F220

    CAS  PubMed  Google Scholar 

  30. Jernigan S, Wing D, Schnaper H, Poncelet A-C, Lopez-Guisa J, Ueno H, Eddy A (1999) Effects of chronic blockade with soluble TGF-b receptor II in rats with overload proteinuria. J Am Soc Nephrol 10:573A

    Google Scholar 

  31. Inazaki K, Kanamaru Y, Kojima Y, Sueyoshi N, Okumura K, Kaneko K, Yamashiro Y, Ogawa H, Nakao A (2004) Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 66:597–604

    Article  CAS  PubMed  Google Scholar 

  32. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D, Lan HY (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-β signaling and fibrosis in rat remnant kidney. Am J Pathol 166:761–771

    CAS  PubMed  Google Scholar 

  33. Liu Y, Rajur K, Tolbert E, Dworkin LD (2000) Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney Int 58:2028–2043

    Article  CAS  PubMed  Google Scholar 

  34. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  CAS  PubMed  Google Scholar 

  35. Samuel CS, Zhao C, Bond CP, Hewitson TD, Amento EP, Summers RJ (2004) Relaxin-1-deficient mice develop an age-related progression of renal fibrosis. Kidney Int 65:2054–2064

    Article  CAS  PubMed  Google Scholar 

  36. Jernigan S, Eddy A (2000) Experimental insights into the mechanisms of tubulo-interstitial scarring. In: El Nahas A, Harris K, Anderson S (eds) Mechanisms and clinical management of chronic renal failure. Oxford, Oxford University Press, pp 104–145

  37. Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12:736–748

    CAS  PubMed  Google Scholar 

  38. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJP (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102:538–549

    CAS  PubMed  Google Scholar 

  39. Eddy AA, Kim H, Lopez-Guisa J, Oda T, Soloway PD (2000) Interstitial fibrosis in mice with overload proteinuria: deficiency of TIMP-1 is not protective. Kidney Int 58:618–628

    Article  CAS  PubMed  Google Scholar 

  40. Oda T, Jung YO, Kim H, Cai x, Lopez-Guisa J, Ikeda Y, Eddy AA (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 30:587–596

    Article  Google Scholar 

  41. Matsuo S, López-Guisa J, Cai X, Okamura D, Alpers C, Bumgarner C, Peters M, Zhang Z, Eddy A (2005) Multi-functionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1 over-expressing mice. Kidney Int 67:2221–2238

    Article  PubMed  Google Scholar 

  42. Zhang G, Collins S, Cai X, Lopez-Guisa J, Eddy A (2004) Plasmin(ogen) promotes renal interstitial fibrosis by inducing epithelial-to-mesenchyman transition: role of plasminogen activate signals. J Am Soc Nephrol 15:36A

    Google Scholar 

  43. Edgtton KL, Gow RM, Kelly DJ, Carmeliet P, Kitching AR (2004) Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int 66:68–76

    Article  CAS  PubMed  Google Scholar 

  44. Yang J, Shultz RW, Mars WM, Wegner RE, Li Y, Dai C, Nejak K, Liu Y (2002) Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110:1525–1538

    Article  CAS  PubMed  Google Scholar 

  45. Cheng S, Pollock A, Olson J, Lovett D (2004) Transgenic renal proximal tubular cell expression of active matrix metalloproteinase-2 drives epithelial-mesenchymal transition and interstitial fibrosis. J Am Soc Nephrol 15:37A

    Article  Google Scholar 

  46. Surendran K, Simon TC, Liapis H, McGuire JK (2004) Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int 65:2212–2222

    Article  CAS  PubMed  Google Scholar 

  47. Sisson TH, Hattori N, Xu Y, Simon RH (1999) Treatment of bleomycin-induced pulmonary fibrosis by transfer of urokinase-type plasminogen activator genes. Hum Gene Ther 10:2315–2323

    Article  CAS  PubMed  Google Scholar 

  48. Salgado S, Garcia J, Vera J, Siller F, Bueno M, Miranda A, Segura A, Grijalva G, Segura J, Orozco H, Hernandez-Pando R, Fafutis M, Aguilar LK, Aguilar-Cordova E, Armendariz-Borunda J (2000) Liver cirrhosis is reverted by urokinase-type plasminogen activator gene therapy. Mol Ther 2:545–551

    Article  CAS  PubMed  Google Scholar 

  49. Hattori N, Mizuno S, Yoshida Y, Chin K, Mishima M, Sisson TH, Simon RH, Nakamura T, Miyake M (2004) The plasminogen activation system reduces fibrosis in the lung by a hepatocyte growth factor-dependent mechanism. Am J Pathol 164:1091–1098

    CAS  PubMed  Google Scholar 

  50. Turck J, Pollock AS, Lee LK, Marti HP, Lovett DH (1996) Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J Biol Chem 271:15074–15083

    Google Scholar 

  51. Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, Skill NJ, Haylor JL, El Nahas AM (2001) Expression of apoptosis-related genes and proteins in experimental chronic renal scarring. J Am Soc Nephrol 12:275–288

    CAS  PubMed  Google Scholar 

  52. Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, Igarashi P (2003) Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14:1188–1199

    Article  PubMed  Google Scholar 

  53. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49

    Article  CAS  PubMed  Google Scholar 

  54. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  55. Hamerski DA, Santoro SA (1999) Integrins and the kidney: biology and pathobiology. Curr Opin Nephrol Hypertens 8:9–14

    Article  CAS  PubMed  Google Scholar 

  56. Matsumoto M, Tanaka T, Yamamoto T, Noiri E, Miyata T, Inagi R, Fujita T, Nangaku M (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 15:1574–1581

    Article  PubMed  Google Scholar 

  57. Orphanides C, Fine LF, Norman JT (1997) Hypoxia stimulates proximal tubular cell matrix production via a TGF-β1-independent mechanism. Kidney Int 52:637–647

    CAS  PubMed  Google Scholar 

  58. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and startification. Am J Kidney Dis 39:S1–S266

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges research support from the National Institutes of Health grants DK54500 and DK44757. Laura Finn, M.D. kindly provided the photomicrographs in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison A. Eddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eddy, A.A. Can renal fibrosis be reversed?. Pediatr Nephrol 20, 1369–1375 (2005). https://doi.org/10.1007/s00467-005-1995-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-1995-5

Keywords

Navigation