Skip to main content

Advertisement

Log in

Albuminuria and insulin resistance in children with biopsy proven non-alcoholic fatty liver disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Insulin resistance may favor increased urinary albumin excretion (UAE), leading progressively to chronic kidney disease (CKD). A recent study on non-alcoholic fatty liver disease (NAFLD), a condition of insulin resistance, associated this disease with the incidence of CKD in patients with type 2 diabetes. The aim of our study was to determine whether there is an association between insulin resistance and kidney function, based on estimates of UAE and creatinine clearance in children with biopsy-proven NAFLD. Kidney function was assessed in 80 patients with NAFLD and 59 individuals of normal weight matched for age and sex. Insulin resistance was measured by means of the homeostatic model assessment-insulin resistance (HOMA-IR) and limited to NAFLD patients by using the whole-body insulin sensitivity index. The HOMA-IR was found to differ significantly between the two groups (2.69 ± 1.7 vs. 1.05 ± 0.45; p = 0.002), while UAE (9.02 ± 5.8 vs. 8.0 ± 4.3 mg/24 h; p = 0.9) and creatinine clearance (78 ± 24 vs. 80 ± 29 mg/min; p = 0.8) did not. We found a significant but weak inverse correlation between insulin sensitivity and creatinine clearance in NAFLD patients (r s = –0.25;p = 0.02). No difference was observed in kidney function between NAFLD children presenting with or without metabolic syndrome, low or normal HDL-cholesterol, and different degrees of histological liver damage (grade of steatosis ≥2, necro-inflammation, and fibrosis). Patients with hypertension had increased levels of UAE (p = 0.04). A longer exposure to insulin resistance may be required to cause the increase in urinary albumin excretion and to enable the detection of the effect of the accelerated atherogenic process most likely occurring in children with fatty liver disease. Longitudinal studies are needed to rule out any causative relationship between insulin resistance and urinary albumin excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, Schroll M, Jensen JS (1999) Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol 19:1992–1997

    Article  CAS  Google Scholar 

  2. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE; Prevention of Renal and Vascular End Stage Disease (PREVEND) Study Group (2002) Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106:1777–1782

    Article  CAS  Google Scholar 

  3. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Hallé JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S, HOPE Study Investigators (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426

    Article  CAS  Google Scholar 

  4. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE, Dahlöf B, Devereux RB, Beevers G, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Kristianson K, Lederballe-Pedersen O, Nieminen MS, Okin PM, Omvik P, Oparil S, Wedel H, Snapinn SM, Aurup P (2003) Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med 139:901–906

    Article  Google Scholar 

  5. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, Appleyard M, Jensen JS (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35

    Article  CAS  Google Scholar 

  6. Forman JP, Brenner BM (2006) ‘Hypertension’ and ‘microalbuminuria’: the bell tolls for thee. Kidney Int 69:22–28

    Article  CAS  Google Scholar 

  7. Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE (2002) Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int 62:963–970

    Article  CAS  Google Scholar 

  8. Mykkänen L, Zaccaro DJ, Wagenknecht LE, Robbins DC, Gabriel M, Haffner SM (1998) Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 47:793–800

    Article  Google Scholar 

  9. Parvanova AI, Trevisan R, Iliev IP, Dimitrov BD, Vedovato M, Tiengo A, Remuzzi G, Ruggenenti P (2006) Insulin resistance and microalbuminuria: a cross-sectional, case–control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 55:1456–1462

    Article  CAS  Google Scholar 

  10. Ruggenenti P, Remuzzi G (2006) Time to abandon microalbuminuria. Kidney Int 70:1214–1222

    Article  CAS  Google Scholar 

  11. Manco M, Marcellini M, Devito R, Comparcola D, Sartorelli MR, Nobili V (2008) Metabolic syndrome and liver histology in paediatric non-alcoholic steatohepatitis. Int J Obes (Lond) 32:381–387

    Article  CAS  Google Scholar 

  12. World Health Organization (1999) Report of a WHO consultation: definition, diagnosis, and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Department of Noncommunicable Disease Surveillance, WHO, Geneva

  13. Targher G, Chonchol M, Bertolini L, Rodella S, Zenari L, Lippi G, Franchini M, Zoppini G, Muggeo M (2008) Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease. J Am Soc Nephrol 19:1564–1570

    Article  CAS  Google Scholar 

  14. Manco M, Bedogni G, Marcellini M, Devito R, Ciampalini P, Sartorelli MR, Comparcola D, Piemonte F, Nobili V (2008) Waist circumference correlates with liver fibrosis in children with non-alcoholic steatohepatitis. Gut 57:1283–1287

    Article  CAS  Google Scholar 

  15. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 320:1–6

    Article  Google Scholar 

  16. Alberti G, Zimmet P (2007) The IDF consensus on the prevention of Type 2 Diabetes. Diabetes Voice 52:23–27

    Google Scholar 

  17. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  18. Italian Society of Pediatrics (2006) Obesità del bambino e dell’adolescente: Consensus su prevenzione, diagnosi e terapia. Available at https://doi.org/www.scottibassani.it

  19. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 26:S5–20

    Article  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  Google Scholar 

  21. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

    Article  CAS  Google Scholar 

  22. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ; Nonalcoholic Steatohepatitis Clinical Research Network (2005) Design and validation of a histological scoring system for non alcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  Google Scholar 

  23. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115:e500–e503

    Article  Google Scholar 

  24. Jasik CB, Lustig RH (2008) Adolescent obesity and puberty: the “perfect storm”. Ann N Y Acad Sci 1135:265–279

    Article  CAS  Google Scholar 

  25. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32:219–226

    CAS  PubMed  Google Scholar 

  26. Dahlquist G, Rudberg S (1987) The prevalence of microalbuminuria in diabetic children and adolescents and its relation to puberty. Acta Paediatr Scand 76:795–800

    Article  CAS  Google Scholar 

  27. Bangstad HJ, Dahl-Jorgensen K, Kjaersgaard P, Mevold K, Hanssen KF (1993) Urinary albumin excretion rate and puberty in non-diabetic children and adolescents. Acta Paediatr 82:857–862

    Article  CAS  Google Scholar 

  28. Mueller PW, Caudill SP (1999) Urinary albumin excretion in children: factors related to elevated excretion in the United States population. Ren Fail 21:293–302

    Article  CAS  Google Scholar 

  29. Nguyen S, McCulloch C, Brakeman P, Portale A, Hsu C (2008) Being overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics 121:37–45

    Article  Google Scholar 

  30. Mathiesen ER, Saurbrey N, Hommel E, Parving HH (1986) Prevalence of microalbuminuria in children with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 29:640–643

    Article  CAS  Google Scholar 

  31. Burgert TS, Dziura J, Yeckel C, Parving HH (2005) Microalbuminuria in pediatric obesity: prevalence and relation to other cardiovascular risk factors. Int J Obes (Lond) 30:273–280

    Article  Google Scholar 

  32. Csernus K, Lanyi E, Erhardt E, Molnar D (2005) Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr 164:44–49

    Article  CAS  Google Scholar 

  33. Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, Linder B, Marcovina SM, Mayer-Davis EJ, Pettitt DJ, Rodriguez BL, Dabelea D (2007) The SEARCH for Diabetes in Youth Study: higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes. Diabetes Care 30:2593–2598

    Article  Google Scholar 

  34. Ettinger LM, Freeman K, DiMartino-Nardi JR, Flynn JT (2005) Microalbuminuria and abnormal ambulatory blood pressure in adolescents with type 2 diabetes mellitus. J Pediatr 147:67–73

    Article  CAS  Google Scholar 

  35. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, Silink M, Donaghue KC (2004) Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29:1300–1306

    Article  Google Scholar 

  36. Yoo EG, Choi IK, Kim DH (2004) Prevalence of microalbuminuria in young patients with type 1 and type 2 diabetes mellitus. J Pediatr Endocrinol Metab 17:1423–1427

    Article  Google Scholar 

  37. Adelman RD, Restaino IG, Alon US, Blowey DL (2001) Proteinuria and focal segmental glomerulosclerosis in severely obese adolescents. J Pediatr 138:481–485

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melania Manco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manco, M., Ciampalini, P., DeVito, R. et al. Albuminuria and insulin resistance in children with biopsy proven non-alcoholic fatty liver disease. Pediatr Nephrol 24, 1211–1217 (2009). https://doi.org/10.1007/s00467-009-1134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1134-9

Keywords

Navigation