Skip to main content
Log in

Laminin and transforming growth factor beta-1 in children with vesicoureteric reflux

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

High-grade vesicoureteric reflux (VUR) promotes the development of renal nephropathy (RN) due to scar formation. This process involves transforming growth factor beta-1 (TGF beta1), which stimulates production of the extracellular matrix proteins, including laminin (LN). The aim of the study was to assess LN and TGF beta1 concentration according to VUR grade. The study group (1) consisted of 54 patients aged 6.23 ± 4.15 years with VUR, including: A, 19 with grade II; B, 19 with grade III; and C, 16 with grades IV or V reflux. The control group (2) contained 27 healthy patients aged 6.76 ± 4.02 years. LN and total TGF beta1 concentrations in serum and urine were determined by the immunoenzymatic (EIA) method. To assess total serum TGF beta1 levels, we used a solid-phase enzyme-linked immunosorbent assay (ELISA). Both serum and urinary levels of LN and TGF beta1 in VUR patients were higher compared with controls (p < 0.05). The highest urinary concentration of LN and TGF beta1 was found in subgroup C. A positive correlation was noted between urinary TGF beta1 and LN. Increased TGF-beta1 and LN levels in urine of high-grade VUR children suggests a potential role in fibrogenesis. Further trials are needed to investigate the role of serum and urinary LN level in VUR children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Backer GJ, Kincaid-Smith P (1993) Reflux nephropathy: the glomerular lesion and progression of renal failure. Pediatr Nephrol 7:365–369

    Google Scholar 

  2. Orellana P, Baquedano P, Rangarajan V, Zhao JH, Eng ND, Fettich J, Chaiwatanarat T, Sonmezoglu K, Kumar D, Park YH, Samuel AM, Sixt R, Bhatnagar V, Padhy AK (2004) Relationship between acute pyelonephritis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. Pediatr Nephrol 19:1122–1126

    PubMed  Google Scholar 

  3. Coulthard MG, Flecknell P, Orr H, Manas D, O’Donnell M (2002) Renal scarring caused by vesicoureteric reflux and urinary infection: a study in pigs. Pediatr Nephrol 17:481–484

    PubMed  Google Scholar 

  4. Strutz F, Neilson EG (2003) New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol 24:459–476

    CAS  PubMed  Google Scholar 

  5. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292

    CAS  PubMed  Google Scholar 

  6. Sales VL, Engelmayr GC Jr, Mettler BA, Johnson JA Jr, Sacks MS, Mayer JE Jr (2006) Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation 4:I193–I199

    Google Scholar 

  7. Foidart JM, Bere EW Jr, Yaar M, Rennard SI, Gullino M, Martin GR, Katz SI (1980) Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab Invest 42:336–342

    CAS  PubMed  Google Scholar 

  8. Zuk A, Matlin KS (2002) Induction of a laminin isoform and alpha(3)beta(1)-integrin in renal ischemic injury and repair in vivo. Am J Physiol Renal Physiol 283:F971–F984

    PubMed  Google Scholar 

  9. Chen LL, Zhang JY, Wang BP (2006) Renoprotective effects of fenofibrate in diabetic rats are achieved by suppressing kidney plasminogen activator inhibitor-1. Vascul Pharmacol 44:309–315

    CAS  PubMed  Google Scholar 

  10. Fujimoto N, Sejima H, Kyotani M, Iwata K, Ichida T, Ooshima A (1991) One-step sandwich enzyme immunoassay for human laminin using monoclonal antibodies. Clin Chim Acta 15:157–163

    Google Scholar 

  11. Hansen K, Abrass CK (1999) Role of laminin isoforms in glomerular structure. Pathobiology 67:84–91

    CAS  PubMed  Google Scholar 

  12. Peutz-Kootstra CJ, Hansen K, De Heer E, Abrass CK, Bruijn JA (2000) Differential expression of laminin chains and anti-laminin autoantibodies in experimental lupus nephritis. J Pathol 192:404–412

    CAS  PubMed  Google Scholar 

  13. Hayashi Y, Makino H, Ota Z (1992) Serum and urinary concentrations of type IV collagen and laminin as a marker of microangiopathy in diabetes. Diabet Med 9:366–370

    CAS  PubMed  Google Scholar 

  14. Kikkawa Y, Virtanen I, Miner JH (2003) Mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the glomerular basement membrane. J Cell Biol 161:187–196

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer E, Mougenot B, Callard P, Ronco P, Rossert J (2000) Abnormal expression of glomerular basement membrane laminins in membranous glomerulonephritis. Nephrol Dial Transplant 15:1956–1964

    CAS  PubMed  Google Scholar 

  16. Segarra A, Simo R, Marti R, Sauri R, Segura R, Ruiz P, Masmiquel LL, Piera LL (1996) Serum laminin level and disease activity in primary membranous and membranoproliferative glomerulonephritis: a prospective follow-up. Nephron 73:367–372

    CAS  PubMed  Google Scholar 

  17. Kim CD, Cho YJ, Park SH, Ha SW, Lee EG, Kim YJ, Kwon TH, Kim IS, Kim YL (2006) Urinary transforming growth factor-beta-induced gene-h3 (betaig-h3) as a sensitive predictor in chronic cyclosporine nephrotoxicity. Transplant Proc 38:1314–1319

    CAS  PubMed  Google Scholar 

  18. Ben-Yehuda A, Rasooly L, Bar-Tana R, Breuer G, Tadmor B, Ulmansky R, Naparstek Y (1995) The urine of SLE patients contains antibodies that bind to the laminin component of the extracellular matrix. J Autoimmun 8:279–291

    CAS  PubMed  Google Scholar 

  19. Yoshioka K, Takemura T, Matsubara K, Miyamoto H, Akano N, Maki S (1987) Immunohistochemical studies of reflux nephropathy. The role of extracellular matrix, membrane attack complex, and immune cells in glomerular sclerosis. Am J Pathol 129:223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Mobius TE (1985) International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol 15:105–109

    CAS  PubMed  Google Scholar 

  21. Goldraich IH, Goldraich NP, Ramos OL (1983) Classification of reflux nephropathy according to findings at DMSA renal scan. Eur J Pediatr 148:212–218

    Google Scholar 

  22. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    CAS  PubMed  Google Scholar 

  23. Danielpour D (1993) Improved sandwich enzyme-linked immunosorbent assays for transforming growth factor beta 1. J Immunol Methods 158:7–25

    Google Scholar 

  24. Gordon I, Barkovics M, Pindoria S, Cole TJ, Woolf AS (2003) Primary vesicoureteric reflux as a predictor of renal damage in children hospitalized with urinary tract infection: a systematic review and meta-analysis. J Am Soc Nephrol 14:739–744

    PubMed  Google Scholar 

  25. Goldman M, Bistritzer T, Horne T, Zoareft I, Aladjem M (2000) The etiology of renal scars in infants with pyelonephritis and vesicoureteral reflux. Pediatr Nephrol 14:385–388

    CAS  PubMed  Google Scholar 

  26. Maruyama T, Hayashi Y, Nakane A, Sasaki S, Kohri K (2005) Intermittent pressure-loading increases transforming growth factor-beta-1 secretion from renal tubular epithelial cells: in vitro vesicoureteral reflux model. Urol Int 75:150–158

    CAS  PubMed  Google Scholar 

  27. Kagami S, Border WA, Miller DE, Noble NA (1994) Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 93:2431–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301

    CAS  PubMed  Google Scholar 

  29. Chai Q, Krag S, Miner JH, Nyengaard JR, Chai S, Wogensen L (2003) TGF-beta1 induces aberrant laminin chain and collagen type IV isotype expression in the glomerular basement membrane. Nephron Exp Nephrol 94:e123–e136

    CAS  PubMed  Google Scholar 

  30. Junker U, Haufe CC, Nuske K, Rebstock K, Steiner T, Wunderlich H, Junker K, Reinhold D (2000) Elevated plasma TGF-beta1 in renal diseases: cause or consequence? Cytokine 12:1084–1091

    CAS  PubMed  Google Scholar 

  31. Goumenos DS, Tsakas S, El Nahas AM, Alexandri S, Oldroyd S, Kalliakmani P, Vlachojannis JG (2002) Transforming growth factor-beta(1) in the kidney and urine of patients with glomerular disease and proteinuria. Nephrol Dial Transplant 17:2145–2152

    CAS  PubMed  Google Scholar 

  32. Murakami K, Takemura T, Hino S, Yoshioka K (1997) Urinary transforming growth factor-beta in patients with glomerular diseases. Pediatr Nephrol 11:334–336

    CAS  PubMed  Google Scholar 

  33. Zajaczkowska M, Bienias B, Borzecka H, Sikora P, Majewski M, Bojarska-Junak A (2006) Serum TGF-beta1 level in children with reflux nephropathy. Przegl Lek 63:121–123

    PubMed  Google Scholar 

  34. Farmaki E, Papachristou F, Winn RM, Karatzas N, Sotiriou J, Roilides E (2005) Transforming growth factor-beta1 in the urine of young children with urinary tract infection. Pediatr Nephrol 20:180–183

    PubMed  Google Scholar 

  35. Yang Y, Zhang SY, Sich M, Beziau A, van den Heuvel LP, Gubler MC (2001) Glomerular extracellular matrix and growth factors in diffuse mesangial sclerosis. Pediatr Nephrol 16:429–438

    CAS  PubMed  Google Scholar 

  36. Palmer LS, Maizels M, Kaplan WE, Firlit CF, Cheng EY (1997) Urine levels of transforming growth factor-beta1 in children with ureteropelvic junction obstruction. Urology 50:769–773

    CAS  PubMed  Google Scholar 

  37. Solari V, Owen D, Puri P (2005) Association of transforming growth factor-beta1 gene polymorphism with reflux nephropathy. J Urol 174:1609–1611

    CAS  PubMed  Google Scholar 

  38. Saw S, Aw TC, Sinniah R (2001) Urine laminin and kallikrein, markers of tubulointerstitial damage in experimental protein overload on pre-existing renal damage. Pathology 33:37–43

    CAS  PubMed  Google Scholar 

  39. Kootstra CJ, Bergijk EC, Veninga A, Prins FA, de Heer E, Abrahamson DR, Bruijn JA (1995) Qualitative alterations in laminin expression in experimental lupus nephritis. Am J Pathol 147:476–488

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Banu N, Hara H, Okamura M, Egusa G, Yamakido M (1995) Urinary excretion of type IV collagen and laminin in the evaluation of nephropathy in NIDDM: comparison with urinary albumin and markers of tubular dysfunction and/or damage. Diabetes Res Clin Pract 29:57–67

    CAS  PubMed  Google Scholar 

  41. Dogic D, Hulsmann H, Sherman N, Fox JW, Broermann R, Paulsson M, Aumailley M (1999) Cell adhesion to a population of laminin isoforms isolated from normal renal tissue. Matrix Biol 18:433–444

    CAS  PubMed  Google Scholar 

  42. Kirkali G, Tüzel E, Güler C, Gezer S, Kirkali Z (2001) Significance of tissue laminin P(1) elastase and fibronectin levels in transitional cell carcinoma of the bladder. Eur Urol 39:292–299

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Wasilewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabasiñska, A., Zoch-Zwierz, W., Wasilewska, A. et al. Laminin and transforming growth factor beta-1 in children with vesicoureteric reflux. Pediatr Nephrol 23, 769–774 (2008). https://doi.org/10.1007/s00467-007-0723-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0723-8

Keywords

Navigation