Skip to main content
Log in

Cardiovascular alterations do exist in children with stage-2 chronic kidney disease

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Cardiovascular disease (CVD) is an important complication of chronic kidney disease (CKD) in children. However, it is not well known when and how cardiovascular alterations start.

Methods

This cross-sectional, controlled study consisted of 25 patients and 28 healthy controls. 24-h ambulatory blood pressure monitoring, aortic pulse wave velocity (aPWV), carotid intima-media thickness (cIMT) and carotid distensibility (distensibility coefficient and β stiffness index), and echocardiography were assessed to evaluate CVD. Routine biochemical parameters, fibroblast growth factor-23 (FGF23) and high sensitive C- reactive protein were measured to determine cardiovascular risk factors.

Results

Hypertension was found in 12 patients (48 %). Patients had higher FGF23 levels and aPWV-standard deviation score (SDS) as compared to the controls (p = 0.003 and p = 0.002, respectively). Aortic PWV-SDS was predicted by increased daytime systolic blood pressure load (β = 0.512, p = 0.009, R 2 = 0.262). Neither cIMT nor distensibility differed between the groups; however, older age and high level of FGF23 were independent predictors of β stiffness index in patients (β = 0.507, p = 0.005, R 2 = 0.461 and β = 0.502, p = 0.005, R 2 = 0.461, respectively). As compared to controls, patients had worse left ventricular diastolic function [lower E/A ratio p = 0.006) and increased left atrial dimension (p < 0.001)].

Conclusions

Cardiovascular deteriorations appear in children with stage-2 CKD. Good control of BP and decreasing the level of FGF23 may be useful to slow down the progression of cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9(12 Suppl):16–23.

    Google Scholar 

  2. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, et al. Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int. 2002;61(2):621–9.

    Article  PubMed  Google Scholar 

  3. Shroff R, Degi A, Kerti A, Kis E, Cseprekal O, Tory K, et al. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol. 2013;28(6):875–84.

    Article  PubMed  Google Scholar 

  4. Chinali M, de Simone G, Matteucci MC, Picca S, Mastrostefano A, Anarat A, et al. Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol. 2007;18(2):593–8.

    Article  PubMed  Google Scholar 

  5. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16(5):1494–500.

    Article  PubMed  Google Scholar 

  6. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, et al. Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int. 2004;65(4):1461–6.

    Article  PubMed  Google Scholar 

  7. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, et al. Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol. 2005;16(9):2796–803.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin N Am. 1987;34(3):571–90.

    Article  CAS  Google Scholar 

  9. Soergel M, Kirschstein M, Busch C, Danne T, Gellermann J, Holl R, et al. Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr. 1997;130(2):178–84.

    Article  CAS  PubMed  Google Scholar 

  10. Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F, German Working Group on Pediatric H. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20(10):1995–2007.

    Article  PubMed  Google Scholar 

  11. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, et al. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014;63(5):1116–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hickson SS, Butlin M, Broad J, Avolio AP, Wilkinson IB, McEniery CM. Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res. 2009;32(12):1079–85.

    Article  PubMed  Google Scholar 

  13. Jourdan C, Wuhl E, Litwin M, Fahr K, Trelewicz J, Jobs K, et al. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23(9):1707–15.

    Article  CAS  PubMed  Google Scholar 

  14. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21(2):93–111 (quiz 89-90).

    Article  PubMed  Google Scholar 

  15. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  16. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95 (quiz 576–7).

    Article  PubMed  Google Scholar 

  17. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977;55(4):613–8.

    Article  CAS  PubMed  Google Scholar 

  18. Savage DD, Garrison RJ, Kannel WB, Levy D, Anderson SJ, Stokes J 3rd, et al. The spectrum of left ventricular hypertrophy in a general population sample: the Framingham Study. Circulation. 1987;75(1 Pt 2):I26–33.

    CAS  PubMed  Google Scholar 

  19. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22(6):709–14.

    Article  PubMed  Google Scholar 

  20. de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25(5):1056–62.

    Article  PubMed  Google Scholar 

  21. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102(15):1788–94.

    Article  CAS  PubMed  Google Scholar 

  22. Pritchett AM, Jacobsen SJ, Mahoney DW, Rodeheffer RJ, Bailey KR, Redfield MM. Left atrial volume as an index of left atrial size: a population-based study. J Am Coll Cardiol. 2003;41(6):1036–43.

    Article  PubMed  Google Scholar 

  23. Mitsnefes M, Ho PL, McEnery PT. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol. 2003;14(10):2618–22.

    Article  PubMed  Google Scholar 

  24. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, et al. Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension. 2008;52(4):631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samuels J, Ng D, Flynn JT, Mitsnefes M, Poffenbarger T, Warady BA, et al. Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension. 2012;60(1):43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Otsuka T, Suzuki M, Yoshikawa H, Sugi K. Left ventricular diastolic dysfunction in the early stage of chronic kidney disease. J Cardiol. 2009;54(2):199–204.

    Article  PubMed  Google Scholar 

  27. Simek CL, Feldman MD, Haber HL, Wu CC, Jayaweera AR, Kaul S. Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function. J Am Soc Echocardiogr. 1995;8(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  28. Matteucci MC, Wuhl E, Picca S, Mastrostefano A, Rinelli G, Romano C, et al. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol. 2006;17(1):218–26.

    Article  PubMed  Google Scholar 

  29. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol. 2010;21(1):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Civilibal M, Caliskan S, Adaletli I, Oflaz H, Sever L, Candan C, et al. Coronary artery calcifications in children with end-stage renal disease. Pediatr Nephrol. 2006;21(10):1426–33.

    Article  PubMed  Google Scholar 

  31. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007;18(11):2996–3003.

    Article  CAS  PubMed  Google Scholar 

  32. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–50.

    Article  CAS  PubMed  Google Scholar 

  33. Kis E, Cseprekal O, Horvath Z, Katona G, Fekete BC, Hrapka E, et al. Pulse wave velocity in end-stage renal disease: influence of age and body dimensions. Pediatr Res. 2008;63(1):95–8.

    Article  PubMed  Google Scholar 

  34. Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y, et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int. 2014;85(5):1103–11.

    Article  CAS  PubMed  Google Scholar 

  35. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int. 2012;23(7):2017–25.

    Article  CAS  PubMed  Google Scholar 

  36. Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205(2):385–90.

    Article  CAS  PubMed  Google Scholar 

  37. Scialla JJ, Xie H, Rahman M, Anderson AH, Isakova T, Ojo A, et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25(2):349–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by Istanbul University Scientific Research Project and a part of the data of this study was presented as a poster at the 45th annual meeting of the European Society for Pediatric Nephrology (ESPN) 2012. We thank the patients and their families taking part in this study and Dr. Mehmet Şükrü Sever and Dr. Zeynep Atam Taşdemir for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Taşdemir.

Ethics declarations

Conflict of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşdemir, M., Eroğlu, A.G., Canpolat, N. et al. Cardiovascular alterations do exist in children with stage-2 chronic kidney disease. Clin Exp Nephrol 20, 926–933 (2016). https://doi.org/10.1007/s10157-016-1234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1234-3

Keywords

Navigation