Skip to main content
Log in

A weighted Nitsche’s method for interface problems with higher-order simplex elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We develop a numerical strategy based on a weighted Nitsche’s approach to model a general class of interface problems with higher-order simplex elements. We focus attention on problems in which the jump in the field quantities across an interface is given. The presented method generalizes the weighted Nitsche’s approach of Annavarapu et al. (Comput. Meth. Appl. Mech. Eng. 225–228:44–54, 2012) to higher-order simplices. Specifically, for higher-order simplex elements, we derive closed-form analytical expressions for the stabilization parameter arising in Nitsche’s variational form. We also prescribe corresponding weights for the discrete fluxes in the consistency terms present in Nitsche’s variational form. The prescribed choice of weights is shown to be optimal such that it minimizes the stabilization parameter while ensuring coercivity of the bilinear form. In the presence of large contrasts in material properties and mesh sizes, the proposed weighting yields better conditioned systems than the traditional Nitsche formulation by bounding the maximum eigenvalue of the discrete system from above. Further, the geometrical representation of curved interfaces is improved through a hierarchical local renement approach. Several numerical examples are presented with quadratic triangles to demonstrate the efficacy of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ainsworth M, Rankin R (2012) Technical note: a note on the selection of the penalty parameter for discontinuous galerkin finite element schemes. Numer Methods Part Differ Equ 28:1099–1104

    Article  MathSciNet  Google Scholar 

  2. Annavarapu C (2013) An efficient finite element method for interface problems. Ph.D. thesis, Duke University

  3. Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225–228:44–54

    Article  MathSciNet  MATH  Google Scholar 

  4. Annavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Meth Eng 92(2):206–228

    Article  MathSciNet  MATH  Google Scholar 

  5. Annavarapu C, Hautefeuille M, Dolbow JE (2013) A nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part ii: Intersecting interfaces. Comput Methods Appl Mech Eng 267:318–341

    Article  MathSciNet  MATH  Google Scholar 

  6. Annavarapu C, Hautefeuille M, Dolbow JE (2014) A nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part i: Single interface. Comput Methods Appl Mech Eng 268:417–436

    Article  MathSciNet  MATH  Google Scholar 

  7. Annavarapu C, Settgast RR, Johnson SM, Fu P, Herbold EB (2015) A weighted nitsche stabilized method for small-sliding contact on frictional surfaces. Comput Methods Appl Mech Eng 283:763–781

    Article  MathSciNet  MATH  Google Scholar 

  8. Annavarapu C, Settgast RR, Vitali E, Morris JP (2016) A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods. Comput Methods Appl Mech Eng 311:815–837

    Article  MathSciNet  MATH  Google Scholar 

  9. Atallah N, Canuto C, Scovazzi G (2020) Analysis of the shifted boundary method for the stoke’s problem. Comput Methods Appl Mech Eng 358:112609

    Article  MathSciNet  MATH  Google Scholar 

  10. Béchet E, Moës N, Wohlmouth B (2009) A stable lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Meth Eng 78(8):931–954

    Article  MathSciNet  MATH  Google Scholar 

  11. Benowitz BA, Waisman H (2013) A spline-based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations. Int J Numer Meth Eng 95(5):361–386

    Article  MathSciNet  MATH  Google Scholar 

  12. Burman E, Claus S, Hansbo P (2015) Cutfem: discretizing geometry and partial differential equations. Int J Numer Meth Eng 104(7):472–501

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. Int J Numer Meth Eng 82(5):564–590

    MathSciNet  MATH  Google Scholar 

  14. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Eng 78(2):229–252

    Article  MathSciNet  MATH  Google Scholar 

  15. Dolbow J, Nadeau J (2002) On the use of effective properties for the fracture analysis of microstructured materials. Eng Fract Mech 69:1607–1634

    Article  Google Scholar 

  16. Dréau K, Chevaugeon N, Moës N (2010) Studied x-fem enrichment to handle material interfaces with higher order finite element. Comput Methods Appl Mech Eng 199(29–32):1922–1936

    Article  MathSciNet  MATH  Google Scholar 

  17. Duarte CA, Oden JT, Babuška I (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  MathSciNet  Google Scholar 

  18. Embar A, Dolbow J, Harari I (2010) Imposing dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Meth Eng 83(7):877–898

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferté G, Massin P, Moës N (2014) Interface problems with quadratic x-fem: design of a stable multiplier space and error analysis. Int J Numer Meth Eng 100(11):834–870

    Article  MathSciNet  MATH  Google Scholar 

  20. Fries TP (2008) A corrected xfem approximation without problems in blending elements. Int J Numer Meth Eng 75(5):503–532

    Article  MathSciNet  MATH  Google Scholar 

  21. Gracie R, Wang HW, Belytschko T (2008) Blending in the extended nite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Meth Eng 74(11):1645–1669

    Article  MATH  Google Scholar 

  22. Griebel M, Schweitzer M (2003) A particle-partition of unity method part v: Boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542

  23. Gupta V, Duarte CA, Babuška I (2013) A stable and optimally convergent generalized fem (sgfem) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng 266:23–39

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  26. Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Meth Eng 90(1):40–64

    Article  MathSciNet  MATH  Google Scholar 

  27. Huynh LT, Nguyen N, Peraire J, Khoo B (2013) A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int J Numer Meth Eng 93(2):183–200

    Article  MathSciNet  MATH  Google Scholar 

  28. Ji H, Chopp D, Dolbow JE (2002) A hybrid extended finite element/level set method for modeling phase transformations. Int J Numer Meth Eng 54(8):1209–1233

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang W, Annavarapu C, Dolbow JE, Harari I (2015) A robust Nitsche’s formulation for interface problems with spline-based finite elements. Int J Numer Meth Eng 104(7):676–696

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang W, Kim TY (2016) Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries. Comput Methods Appl Mech Eng 299:144–160

  31. Jiang W, Spencer BW, Dolbow JE (2020) Ceramic nuclear fuel fracture modeling with the extended finite element method. Eng Fract Mech 223:106713

    Article  Google Scholar 

  32. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    Article  MathSciNet  MATH  Google Scholar 

  33. Kästner M, Müller S, Goldmann J, Spieler C, Brummund J, Ulbricht V (2013) Higher-order extended fem for weak discontinuities-level set representation, quadrature and application to magneto-mechanical problems. Int J Numer Meth Eng 93(13):1403–1424

    Article  MathSciNet  MATH  Google Scholar 

  34. Legrain G (2013) A nurbs enhanced extended finite element approach for unfitted cad analysis. Comput Mech 52(2):913–929

    Article  MathSciNet  MATH  Google Scholar 

  35. Legrain G, Allais R, Cartraud P (2011) On the use of the extended finite element method with quadtree/octree meshes. Int J Numer Meth Eng 86(6):717–743

    Article  MathSciNet  MATH  Google Scholar 

  36. Legrain G, Cartraud P, Perreard I, Moës N (2011) An x-fem and level set computational approach for image-based modelling: application to homogenization. Int J Numer Meth Eng 86(7):915–934

    Article  MATH  Google Scholar 

  37. Legrain G, Chevaugeon N, Dréau K (2012) High order x-fem and levelsets for complex microstructures: uncoupling geometry and approximation. Comput Methods Appl Mech Eng 241–244:172–189

    Article  MathSciNet  MATH  Google Scholar 

  38. Li K, Atallah NM, Main GA, Scovazzi G (2020) The shifted interface method: a flexible approach to embedded interface computations. Int J Numer Meth Eng 121(3):492–518

    Article  MathSciNet  Google Scholar 

  39. Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. Part i: Poisson and stokes problems. J Comput Phys 372:972–995

    Article  MathSciNet  MATH  Google Scholar 

  40. Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. Part ii: linear advection-diffusion and incompressible navier-stokes equations. J Comput Phys 372:996–1026

    Article  MathSciNet  MATH  Google Scholar 

  41. Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Meth Eng 67(12):1641–1669

    Article  MathSciNet  MATH  Google Scholar 

  42. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  43. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  44. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  45. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method. Int J Numer Meth Eng 95(10):811–846

    Article  MathSciNet  MATH  Google Scholar 

  46. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Meth Eng 89(9):1171–1202

    Article  MathSciNet  MATH  Google Scholar 

  47. Schillinger D, Ruess M (2015) The finite cell method: a review in the context of higher-order structural analysis of cad and image-based geometric models. Arch Comput Meth Eng 22:391–455

    Article  MathSciNet  MATH  Google Scholar 

  48. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and b-spline versions of the finite cell method. Comput Mech 50(2):445–478

    Article  MathSciNet  MATH  Google Scholar 

  49. Shahbazi K (2005) An explicit expression for the penalty parameter of the interior penalty method. J Comput Phys 205:401–407

    Article  MATH  Google Scholar 

  50. Song T, Main A, Scovazzi G, Ricchiuto M (2018) The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows. J Comput Phys 369:45–79

    Article  MathSciNet  MATH  Google Scholar 

  51. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Meth Eng 48(11):1549–1570

    Article  MATH  Google Scholar 

  52. Warburton T, Hesthaven J (2003) On the constants in hp-finite element trace inverse inequalities. Comput Methods Appl Mech Eng 192:2765–2773

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang LT, Gerstenberger A, Wang X, Wall WA (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang Z, Jiang W, Dolbow JE, Spencer BW (2018) A modified moment-fitted integration scheme for x-fem applications with history-dependent material data. Comput Mech 62:233–252

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chandrasekhar Annavarapu gratefully acknowledges the support received from the Ministry of Human Resource Development and IIT Madras, under the grant SB20210856CEMHRD008957 to the Subsurface Mechanics and Geo-Energy Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Annavarapu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Liu, Y. & Annavarapu, C. A weighted Nitsche’s method for interface problems with higher-order simplex elements. Comput Mech 69, 1115–1129 (2022). https://doi.org/10.1007/s00466-021-02132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02132-z

Keywords

Navigation