Skip to main content
Log in

A NURBS enhanced extended finite element approach for unfitted CAD analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A NURBS enhanced extended finite element approach is proposed for the unfitted simulation of structures defined by means of CAD parametric surfaces. In contrast to classical X-FEM that uses levelsets to define the geometry of the computational domain, exact CAD description is considered here. Following the ideas developed in the context of the NURBS-enhanced finite element method, NURBS-enhanced subelements are defined to take into account the exact geometry of the interface inside an element. In addition, a high-order approximation is considered to allow for large elements compared to the size of the geometrical details (without loss of accuracy). Finally, a geometrically implicit/explicit approach is proposed for efficiency purpose in the context of fracture mechanics. In this paper, only 2D examples are considered: It is shown that optimal rates of convergence are obtained without the need to consider shape functions defined in the physical space. Moreover, thanks to the flexibility given by the Partition of Unity, it is possible to recover optimal convergence rates in the case of re-entrant corners, cracks and embedded material interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Notes

  1. Not necessarily

References

  1. Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201–204:91–111. doi:10.1016/j.cma.2011.09.012

    Article  Google Scholar 

  2. Bazilevs Y, Bajaj C, Calo V, Hughes T (2010a) Special issue on computational geometry and analysis. Comput. Methods Appl Mech Eng 199(5–8):223, doi:10.1016/j.cma.2009.10.006, http://www.sciencedirect.com/science/article/pii/S0045782509003429

  3. Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes T, Lipton S, Scott M, Sederberg T (2010b) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263. doi:10.1016/j.cma.2009.02.036, http://www.sciencedirect.com/science/article/pii/S0045782509000875

    Google Scholar 

  4. Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056

    Article  MATH  Google Scholar 

  5. Béchet E, Moës N, Wohlmuth B (2009) A stable lagrange multiplier space for the stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78(8):931–954. doi:10.1002/nme.2515

    Article  MATH  Google Scholar 

  6. Belytschko T, Parimi C, Moës N, Usui S, Sukumar N (2003) Structured extended finite element methods of solids defined by implicit surfaces. Int J Numer Methods Eng 56:609–635

    Article  MATH  Google Scholar 

  7. Benson DJ, Bazilevs Y, De Luycker E, Hsu MC, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM. Int J Numer Methods Eng 83(6):765–785. doi:10.1002/nme.2864

    MATH  Google Scholar 

  8. Boor CD (1972) On calculation with B-splines. J Approx Theory 6:50–62

    Article  MATH  Google Scholar 

  9. Cheng KW, Fries T (2009) Higher-order XFEM for curved strong and weak discontinuities. Int J Numer Methods Eng 82:564–590. doi:10.1002/nme.2768, http://doi.wiley.com/10.1002/nme.2768

    Google Scholar 

  10. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57:1015–1038

    Article  MATH  Google Scholar 

  11. Ciarlet P, Raviart PA (1972) Interpolation theory over curved elements, with applications to finite element methods. Comput Methods Appl Mech Eng 1(2):217–249. doi:10.1016/0045-7825(72)90006-0, http://www.sciencedirect.com/science/article/pii/0045782572900060

  12. Cottrell J, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FE. Wiley, New York

    Book  Google Scholar 

  13. Cowper G (1973) Gaussian quadrature formulas for triangles. Int J Numer Methods Eng 7:405–408

    Article  MATH  Google Scholar 

  14. Cox M (1971) The numerical evaluation of B-splines. Tech. Rep. DNAC 4, National Physical Laboratory, Teddington

  15. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87(6):541–565. doi:10.1002/nme.3121

    Article  MATH  Google Scholar 

  16. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78(2):229–252. doi:10.1002/nme.2486

    Article  MathSciNet  MATH  Google Scholar 

  17. Dréau K, Chevaugeon N, Moës N (2010) Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput Methods Appl Mech Eng 199(29–32):1922–1936. doi:10.1016/j.cma.2010.01.021, http://linkinghub.elsevier.com/retrieve/pii/S0045782510000563

  18. Duster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45–48):3768–3782. doi:10.1016/j.cma.2008.02.036, http://linkinghub.elsevier.com/retrieve/pii/S0045782508001163

    Google Scholar 

  19. Ergatoudis I, Irons B, Zienkiewicz O (1968) Curved, isoparametric, “quadrilateral” elements for finite element analysis. Int J Solids Struct 4(1):31–42. doi:10.1016/0020-7683(68)90031-0, http://www.sciencedirect.com/science/article/pii/0020768368900310

  20. Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. SIGGRAPH Comput Graph 22(4):205–212. doi:10.1145/378456.378512, http://doi.acm.org.gate6.inist.fr/10.1145/378456.378512

  21. Fries T (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532. doi:10.1002/nme.2259

    Article  MathSciNet  MATH  Google Scholar 

  22. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304. doi:10.1002/nme.2914

    MathSciNet  MATH  Google Scholar 

  23. Ghorashi SS, Valizadeh N, Mohammadi S (2012) Extended isogeometric analysis for simulation of stationary and propagating cracks. Int J Numer Methods Eng 89(9):1069–1101. doi:10.1002/nme.3277

    Article  MathSciNet  MATH  Google Scholar 

  24. Gomez H, Calo VM, Bazilevs Y, Hughes TJ (2008) Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49–50):4333–4352. doi:10.1016/j.cma.2008.05.003, http://www.sciencedirect.com/science/article/pii/S0045782508001953

    Google Scholar 

  25. Haasemann G, Kästner M, Prüger S, Ulbricht V (2011) Development of a quadratic finite element formulation based on the XFEM and NURBS. Int J Numer Methods Eng 86(4–5):598–617. doi:10.1002/nme.3120

    Article  MATH  Google Scholar 

  26. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540. doi:10.1016/j.cma.2003.12.041, http://www.sciencedirect.com/science/article/B6V29-4BRSGX0-4/2/0a5f9d036b9ef16b2a0e571b247ff04d

  27. Huerta A, Casoni E, Sala-Lardies E, Fernandez-Mendez S, Peraire J (2010) Modeling discontinuities with high-order elements. In: ECCM 2010. Palais des Congres, Paris

  28. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. doi:10.1016/j.cma.2004.10.008, http://www.sciencedirect.com/science/article/pii/S0045782504005171

    Google Scholar 

  29. Kim HJ, Seo YD, Youn SK (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198(37–40):2982–2995. doi:10.1016/j.cma.2009.05.004, http://www.sciencedirect.com/science/article/pii/S0045782509001856

    Google Scholar 

  30. Kim HJ, Seo YD, Youn SK (2010) Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Comput Methods Appl Mech Eng 199(45–48):2796–2812. doi:10.1016/j.cma.2010.04.015, http://www.sciencedirect.com/science/article/pii/S0045782510001325

    Google Scholar 

  31. Királyfalvi G, Szabó B (1997) Quasi-regional mapping for the p-version of the finite element method. Finite Elem Anal Des 27(1):85–97. doi:10.1016/S0168-874X(97)00006-1, http://linkinghub.elsevier.com/retrieve/pii/S0168874X97000061

  32. Legrain G, Chevaugeon N, Dréau K (2012) High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput Methods Appl Mech Eng 241–244(0):172–189. doi:10.1016/j.cma.2012.06.001, http://www.sciencedirect.com/science/article/pii/S0045782512001880

  33. Lenoir M (1986) Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J Numer Anal 23(3):562–580. doi:10.1137/0723036, http://link.aip.org/link/?SNA/23/562/1

  34. Lipton S, Evans J, Bazilevs Y, Elguedj T, Hughes T (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5–8):357–373. doi:10.1016/j.cma.2009.01.022, http://www.sciencedirect.com/science/article/pii/S0045782509000346

    Google Scholar 

  35. Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MATH  Google Scholar 

  36. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  37. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comp Methods Appl Mech Eng 192:3163–3177. http://dx.doi.org/doi:10.1016/S0045-7825(03)00346-3

    Google Scholar 

  38. Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669

    Article  MATH  Google Scholar 

  39. Moumnassi M, Belouettar S, Béchet É, Bordas SP, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200(5–8):774–796. doi:10.1016/j.cma.2010.10.002, http://www.sciencedirect.com/science/article/pii/S004578251000280X

  40. Nitsche J (1971) Über ein Variationprinzip zur lösung von Dirichlet-Problem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Sem Univ Hamburg 36:9–15

    Article  MathSciNet  MATH  Google Scholar 

  41. Parvizian J, Duster A, Rank E (2007) Finite cell method - h and p extension for embedded domain problems in solid mechanics. Comput Mech 41(1):121–133. doi:10.1007/s00466-007-0173-y, http://www.springerlink.com/index/10.1007/s00466-007-0173-y

  42. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–252:104–115. doi:10.1016/j.cma.2012.05.022, http://linkinghub.elsevier.com/retrieve/pii/S0045782512001855

  43. Sala-Lardies E, Huerta A (2012) Optimally convergent high-order X-FEM for problems with voids and inclusions. In: ECCOMAS 2012, Vienna

  44. Schillinger D, Rank E (2011) An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput Methods Appl Mech Eng 200(47–48):3358–3380, doi:10.1016/j.cma.2011.08.002, http://www.sciencedirect.com/science/article/pii/S004578251100257X

  45. Schillinger D, Düster A, Rank E (2011) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89(9): 1711–1202. doi:10.1002/nme.3289, http://dx.doi.org/10.1002/nme.3289

    Google Scholar 

  46. Schillinger D, Dedè L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJ (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252: 116–150. doi:10.1016/j.cma.2012.03.017, http://www.sciencedirect.com/science/article/pii/S004578251200093X

  47. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484, doi:10.1145/882262.882295, http://doi.acm.org.gate6.inist.fr/10.1145/882262.882295

    Google Scholar 

  48. Sevilla R, Fernández-Méndez S (2011) Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM. Finite Elem Anal Des 47(10):1209–1220. doi:10.1016/j.finel.2011.05.011, http://www.sciencedirect.com/science/article/pii/S0168874X1100117X

  49. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76(1):56–83. doi:10.1002/nme.2311

    Article  MATH  Google Scholar 

  50. Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88(2):103–125. doi:10.1002/nme.3164

    Article  MATH  Google Scholar 

  51. Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of high-order curved finite elements. Int J Numer Methods Eng 87(8):719–734. doi:10.1002/nme.3129

    Google Scholar 

  52. Seweryn A, Molski K (1996) Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Eng Fract Mech 55(4):529–556. doi:10.1016/S0013-7944(96)00035-5

  53. Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69

    Article  MATH  Google Scholar 

  54. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33):4081–4193. doi:10.1016/S0045-7825(01)00188-8, http://www.sciencedirect.com/science/article/pii/S0045782501001888

    Google Scholar 

  55. Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite element method. Comput Method Appl Mech Eng 190:6183–6200. http://dx.doi.org/10.1016/S0045-7825(01)00215-8

  56. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  57. Szabó B, Düster A, Rank E (2004) The p-version of the finite element method, Chapt. 5. In: Encyclopedia of computational mechanics. Wiley, New York, pp 120–140

  58. Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the X-FEM for computational fracture mechanics. Appl Math Model 33(12):4269–4282. doi:10.1016/j.apm.2009.02.010, http://www.sciencedirect.com/science/article/pii/S0307904X09000560

    Google Scholar 

  59. Zienkiewicz OC, Taylor R (1991) The finite element method, Vols. 1, 2, 3. McGraw-Hill, London

Download references

Acknowledgments

The support of the ERC Advanced Grant XLS no. 291102 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Legrain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legrain, G. A NURBS enhanced extended finite element approach for unfitted CAD analysis. Comput Mech 52, 913–929 (2013). https://doi.org/10.1007/s00466-013-0854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0854-7

Keywords

Navigation