Skip to main content
Log in

The use of Powell-Sabin B-Splines in a higher-order phase-field model for crack kinking

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Phase-field models for brittle fracture in anisotropic materials result in a fourth-order partial differential equation for the damage evolution. This necessitates a \(\mathcal {C}^1\) continuity of the basis functions. Here, Powell-Sabin B-splines, which are based on triangles, are used for the approximation of the field variables as well as for the the description of the geometry. The use of triangles makes adaptive mesh refinement and discrete crack insertion straightforward. Bézier extraction is used to cast the B-splines in a standard finite element format. A procedure to impose Dirichlet boundary condition is provided for these elements. The versatility and accuracy of the approach are assessed in two case studies, featuring crack kinking and zig-zag crack propagation. It is also shown that the adaptive refinement well captures the evolution of the phase field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Borst R, Remmers JJC, Needleman A, Abellan MA (2004) Discrete versus smeared crack models for concrete fracture: bridging the gap. Int J Numer Anal Methods Geomech 28:583–607

    Article  Google Scholar 

  2. Chen L, Lingen EJ, de Borst R (2017) Adaptive hierarchical refinement of nurbs in cohesive fracture analysis. Int J Numer Methods Eng 112:2151–2173

    Article  MathSciNet  Google Scholar 

  3. Chen L, Verhoosel CV, de Borst R (2018) Discrete fracture analysis using locally refined T-splines. Int J Numer Methods Eng 116:117–140

    Article  MathSciNet  Google Scholar 

  4. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MathSciNet  Google Scholar 

  5. Zhou XP, Bi J, Qian QH (2015) Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech Rock Eng 48:1097–1114

    Article  Google Scholar 

  6. Fathi F, Chen L, de Borst R (2020) Extended isogeometric analysis for cohesive fracture. Int J Numer Methods Eng 121:4584–4613

    MathSciNet  Google Scholar 

  7. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  MathSciNet  Google Scholar 

  8. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MathSciNet  Google Scholar 

  9. de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput Methods Appl Mech Eng 312:78–94

    Article  MathSciNet  Google Scholar 

  10. Wang L, Zhou X (2020) Phase field model for simulating the fracture behaviors of some disc-type specimens. Eng Fract Mech 226:106870. https://doi.org/10.1016/j.engfracmech.2020.106870

    Article  Google Scholar 

  11. Judt PO, Ricoeur A, Linek G (2015) Crack path prediction in rolled aluminum plates with fracture toughness orthotropy and experimental validation. Eng Fract Mech 138:33–48

    Article  Google Scholar 

  12. Ibarra A, Roman B, Melo F (2016) The tearing path in a thin anisotropic sheet from two pulling points: Wulff’s view. Soft Matter 12:5979–5985

    Article  Google Scholar 

  13. Takei A, Roman B, Bico J, Hamm E, Melo F (2013) Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the Wulff plot. Phys Rev Lett 110:144301

    Article  Google Scholar 

  14. Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21

    Article  Google Scholar 

  15. Kakouris EG, Triantafyllou SP (2019) Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy. Comput Methods Appl Mech Eng 357:112503

    Article  MathSciNet  Google Scholar 

  16. Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102:711–727

    Article  MathSciNet  Google Scholar 

  17. Li B, Maurini C (2019) Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy. J Mech Phys Solids 125:502–522

    Article  MathSciNet  Google Scholar 

  18. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  Google Scholar 

  19. Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275

    Article  MathSciNet  Google Scholar 

  20. Vuong AV, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200:3554–3567

  21. de Borst R, Chen L (2018) The role of Bézier extraction in adaptive isogeometric analysis: local refinement and hierarchical refinement. Int J Numer Methods Eng 113:999–1019

  22. Chen L, de Borst R (2018) Adaptive refinement of hierarchical T-splines. Comput Methods Appl Mech Eng 337:220–245

    Article  MathSciNet  Google Scholar 

  23. Chen L, de Borst R (2018) Locally refined T-splines. Int J Numer Methods Eng 114:637–659

    Article  MathSciNet  Google Scholar 

  24. Chen L, Li B, de Borst R (2020) Adaptive isogeometric analysis for phase-field modelling of anisotropic brittle fracture. Int J Numer Methods Eng 121:4630–4648

    Google Scholar 

  25. Dierckx P (1997) On calculating normalized powell-sabin b-splines. Comput Aided Geom Des 15:61–78

    Article  MathSciNet  Google Scholar 

  26. May S, Vignollet J, de Borst R (2016) Powell-Sabin B-splines and unstructured standard T-splines for the solution of Kirchhoff-Love plate theory using Bézier extraction. Int J Numer Methods Eng 107:205–233

    Article  Google Scholar 

  27. Chen L, de Borst R (2019) Cohesive fracture analysis using Powell-Sabin B-splines. Int J Numer Anal Methods Geomech 43:625–640

    Article  Google Scholar 

  28. May S, de Borst R, Vignollet J (2016) Powell-Sabin B-splines for smeared and discrete approaches to fracture in quasi-brittle materials. Comput Methods Appl Mech Eng 307:193–214

    Article  MathSciNet  Google Scholar 

  29. Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489

    Article  MathSciNet  Google Scholar 

  30. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Article  Google Scholar 

  31. Chen L (2015) Three-dimensional Greens function for an anisotropic multi-layered half-space. Comput Mech 56:795–814

    Article  MathSciNet  Google Scholar 

  32. Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Comput Methods Appl Mech Eng 354:990–1026

    Article  MathSciNet  Google Scholar 

  33. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int Numer Methods Eng 83:1273–1311

    Article  MathSciNet  Google Scholar 

  34. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79:1309–1331

    Article  MathSciNet  Google Scholar 

  35. O’Rourke J, Aggarwal A, Maddila S, Baldwin M (1986) An optimal algorithm for finding minimal enclosing triangles. J Algorithms 7:258–269

    Article  MathSciNet  Google Scholar 

  36. Funken S, Praetorius D, Wissgott P (2011) Efficient implementation of adaptive P1-FEM in Matlab. Comput Methods Appl Math 11:460–490

    Article  MathSciNet  Google Scholar 

  37. Chen L, Li B, de Borst R (2019) Energy conservation during remeshing in the analysis of dynamic fracture. Int J Numer Methods Eng 120:433–446

    Article  MathSciNet  Google Scholar 

  38. Chambolle A, Francfort GA, Marigo JJ (2009) When and how do cracks propagate? J Mech Phys Solids 57:1614–1622

    Article  MathSciNet  Google Scholar 

  39. Farrell P, Maurini C (2017) Linear and nonlinear solvers for variational phase-field models of brittle fracture. Int J Numer Methods Eng 109:648–667

    Article  MathSciNet  Google Scholar 

  40. Worsey AJ, Piper B (1988) A trivariate Powell-Sabin interpolant. Comput Aided Geom Des 5:177–186

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Financial support from the European Research Council (ERC Advanced Grant 664734 PoroFrac) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been supported by the European Research Council under Advanced Grant 664734.

Appendices

Appendix A: crack tip displacement fields

For completeness, we present the formulations of asymptotic displacement fields under pure mode-I loading around a straight crack tip. We impose these displacement fields as boundary conditions to approximate singular stress fields (parameterised by the stress intensity factor \(\text {K}_\text {I}\)) around the crack tip. The asymptotic displacement fields are given as

$$\begin{aligned} \begin{aligned} u_x&= \frac{\text {K}_\mathrm {I}}{2\mu }\sqrt{\frac{r}{2\pi }}\cos \frac{\theta }{2}(\kappa -\cos \theta ) \\ u_y&= \frac{\text {K}_\mathrm {I}}{2\mu }\sqrt{\frac{r}{2\pi }}\sin \frac{\theta }{2}(\kappa -\cos \theta ) \end{aligned} \end{aligned}$$
(A.1)

where \(\mu =E/ 2(1+\nu )\), \(\kappa = 3-4\nu \) for plane strain and \(\kappa = (3 -\nu )/(1+\nu )\) for plane stress, and \((r, \theta )\) are polar coordinates with origin positioned at the crack tip. The derivatives of displacement fields with respect to Cartesian coordinates (xy) at the crack tip read:

$$\begin{aligned} \begin{aligned} \frac{\partial u_x}{\partial x}&= \frac{{\text {K}_{\text {I}}}}{4 \mu \sqrt{2 \pi r } }{\cos \frac{\theta }{2}}\left( -\cos \theta +\cos 2\theta +\kappa -1 \right) \\ \frac{\partial u_x}{\partial y}&= \frac{{\text {K}_{\text {I}}}}{4 \mu \sqrt{2 \pi r } }{\sin \frac{\theta }{2}}\left( \cos \theta +\cos 2\theta +\kappa +1 \right) \\ \frac{\partial u_y}{\partial x}&= \frac{{\text {K}_{\text {I}}}}{4 \mu \sqrt{2 \pi r } }{\sin \frac{\theta }{2}}\left( \cos \theta +\cos 2\theta -\kappa -1 \right) \\ \frac{\partial u_y}{\partial y}&= \frac{{\text {K}_{\text {I}}}}{4 \mu \sqrt{2 \pi r } }{\cos \frac{\theta }{2}}\left( \cos \theta -\cos 2\theta +\kappa -1 \right) \end{aligned} \end{aligned}$$
(A.2)

Appendix B: imposing Dirichlet boundary condition

We now show how to impose Dirichlet boundary conditions in the framework of Powell-Sabin elements. In Sect. 3, a special choice of Powell-Sabin (PS) triangle is defined along the boundary: (i) for vertex k with an angle \(\gamma < \pi \), two sides of the Powell-Sabin triangle must be aligned with two boundary edges (Fig. 8(left)); (ii) for vertex k with an angle \(\gamma = \pi \), one side of the Powell-Sabin triangle must be aligned with the boundary edge, see Fig. 8(right). Rewriting Eq. (12) with respect to the nodal degrees of freedom U yields

$$\begin{aligned} \begin{bmatrix}\eta _k^a &{} \eta _k^b &{}\eta _k^c\\ \beta _k^a &{} \beta _k^b &{}\beta _k^c\\ \gamma _k^a &{} \gamma _k^b &{}\gamma _k^c \end{bmatrix} \begin{bmatrix}U^{k,a}\\ U^{k,b}\\ U^{k,c}\end{bmatrix}=\begin{bmatrix}U^{k} \\ \frac{\partial U^k}{\partial x} \\ \frac{\partial U^k}{\partial y} \end{bmatrix} \end{aligned}$$
(B.1)

where \(U^{k,i}\) is the nodal degrees of freedom of Powell-Sabin triangle corner \(i\,\left( i=a,b,c \right) \), associated with vertex k; \(U^{k}\) denotes field values at vertex k; for the example in Sect. 5.1, \(U^{k}\) is given in Eq. (A.1). \(\mathbf {\triangledown } U^k = \left[ \frac{\partial U^k}{\partial x}\,\frac{\partial U^k}{\partial y}\right] \) is the gradient of \(U^k\); it is defined in Eq. (A.2) for the example in Sect. 5.1.

For the vertex k with an angle \(\gamma < \pi \), the coefficients \(\eta _k^i\), \(\beta _k^i\) and \(\gamma _k^i\) \(\left( i=a,b,c \right) \) have the following conditions:

$$\begin{aligned} \begin{aligned} \eta _k^a = \eta _k^c&= 0, \quad \eta _k^b = 1 \\ \begin{bmatrix} \beta _k^a \\ \gamma _k^a \end{bmatrix}\cdot \mathbf {t}&= 0, \quad \begin{bmatrix} \beta _k^c \\ \gamma _k^c \end{bmatrix}\cdot \mathbf {v} = 0 \end{aligned} \end{aligned}$$
(B.2)

in which \(\mathbf {t}\) and \(\mathbf {v}\) are unit vectors along the boundary.

$$\begin{aligned} \mathbf {t} = \frac{\mathbf {x}_a-\mathbf {x}_b}{\left\| \mathbf {x}_a-\mathbf {x}_b \right\| },\qquad \mathbf {v} = \frac{\mathbf {x}_c-\mathbf {x}_b}{\left\| \mathbf {x}_c-\mathbf {x}_b \right\| } \end{aligned}$$
(B.3)

From Eqs. (B.1) and (B.2), we obtain:

$$\begin{aligned} U^{k,b} = U^k,\qquad U^{k,a} = U^k + \frac{\mathbf {\triangledown } U^k \cdot \mathbf {v}}{\begin{bmatrix} \beta _k^a \\ \gamma _k^a\end{bmatrix}\cdot \mathbf {v}} , \qquad U^{k,c} = U^k + \frac{\mathbf {\triangledown } U^k \cdot \mathbf {t}}{\begin{bmatrix} \beta _k^c \\ \gamma _k^c\end{bmatrix}\cdot \mathbf {t}} \end{aligned}$$
(B.4)

For the case of vertex k with an angle \(\gamma = \pi \), the coefficients \(\eta _k^i\), \(\beta _k^i\) and \(\gamma _k^i\) \(\left( i=a,b,c \right) \) should satisfy

$$\begin{aligned} \begin{aligned} \eta _k^a \ne 0,\quad \eta _k^b \ne 0, \quad \eta _k^c = 0 \\ \begin{bmatrix} \beta _k^c \\ \gamma _k^c \end{bmatrix}\cdot \mathbf {v} = 0 \end{aligned} \end{aligned}$$
(B.5)

where \(\mathbf {v}\) denotes the unit vector along the boundary given in Eq. (B.3).

Considering Eqs. (B.1) and (B.5), this leads to

$$\begin{aligned} U^{k,a} = \frac{U^k\varDelta _1 - \eta _k^b\mathbf {\triangledown } U^k\cdot \mathbf {v}}{\eta _k^a\varDelta _1-\eta _k^b\varDelta },\,\qquad U^{k,b} = \frac{-U^k\varDelta + \eta _k^a\mathbf {\triangledown } U^k\cdot \mathbf {v}}{\eta _k^a\varDelta _1-\eta _k^b\varDelta }, \end{aligned}$$
(B.6)

with \(\varDelta = \begin{bmatrix} \beta _k^a \\ \gamma _k^a\end{bmatrix}\cdot \mathbf {v},\, \varDelta _1 = \begin{bmatrix} \beta _k^b \\ \gamma _k^b\end{bmatrix}\cdot \mathbf {v}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, B. & de Borst, R. The use of Powell-Sabin B-Splines in a higher-order phase-field model for crack kinking. Comput Mech 67, 127–137 (2021). https://doi.org/10.1007/s00466-020-01923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01923-0

Keywords

Navigation