Skip to main content
Log in

Three-dimensional Green’s function for an anisotropic multi-layered half-space

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new numerical approach is presented to calculate the Green’s function for an anisotropic multi-layered half space. The formulation is explicit and unconditionally stable. It imposes no limit to the thickness of the layered medium and the magnitude of the frequency. In the analysis, the Fourier transform and the precise integration method (PIM) are employed. Here, the Fourier transform is employed to transform the wave motion equation from the spatial domain to the wavenumber domain. A second order ordinary differential equation (ODE) is observed. Then, the dual vector representation of the wave motion equation is used to reduce the second order ODE to first order. It is solved by the PIM. Finally, the Green’s function in the wavenumber domain is obtained. For the evaluation of the Green’s function in the spatial domain, the double inverse Fourier transform over the wavenumber is employed to derive the solutions. Especially, for the transversely isotropic medium, the double inverse Fourier transform can be further reduced to a single integral by the cylindrical polar coordinate transform. Numerical examples are provided. Comparisons with other methods are done. Very promising results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kausel E (2010) Early history of soil-structure interaction. Soil Dyn Earthq Eng 30(9):822–832

    Article  Google Scholar 

  2. Harkrider DG (1964) Surface waves in multilayered elastic media I. Rayleigh and Love waves from buried sources in a multilayered elastic half-space. Bull Seismol Soc Am 54(2):627–679

    Google Scholar 

  3. Apsel RJ, Luco JE (1983) On the Green’s functions for a layered half-space. Part II. Bull Seismol Soc Am 73(4):931–951

    Google Scholar 

  4. Bouchon M (1981) A simple method to calculate Green’s functions for elastic layered media. Bull Seismol Soc Am 71(4):959–971

    Google Scholar 

  5. Liao J, Wang C, Jong J (1998) Elastic solutions for a transversely isotropic half-space subjected to a point load. Int J Numer Anal Methods Geom 22(6):425–447

    Article  MATH  Google Scholar 

  6. Pan E (2003) Three-dimensional Green’s functions in an anisotropic half-space with general boundary conditions. J Appl Mech 70(1):101–110

    Article  MATH  MathSciNet  Google Scholar 

  7. Park J, Kausel E (2004) Impulse response of elastic half-space in the wave number-time domain. J Eng Mech 130(10):1211–1222

    Article  Google Scholar 

  8. Waas G, Riggs H, Werkle H (1985) Displacement solutions for dynamic loads in transversely-isotropic stratified media. Earthq Eng Struct Dyn 13(2):173–193

    Article  Google Scholar 

  9. Oliveira Barbosa JM, Kausel E (2012) The thin-layer method in a cross-anisotropic 3D space. Int J Numer Methods Eng 89(5):537–560

    Article  MATH  Google Scholar 

  10. Khojasteh A, Rahimian M, Eskandari M, Pak RYS (2011) Three-dimensional dynamic Green’s functions for a multilayered transversely isotropic half-space. Int J Solids Struct 48(9):1349–1361

    Article  MATH  Google Scholar 

  11. Strukelj A, Plibersek T, Umek A (2006) Evaluation of Green’s function for vertical point-load excitation applied to the surface of a layered semi-infinite elastic medium. Arch Appl Mech 76(7–8):465–479

    Article  MATH  Google Scholar 

  12. Tadeu A, António J, Godinho L (2001) Green’s function for two-and-a-half dimensional elastodynamic problems in a half-space. Comput Mech 27(6):484–491

    Article  MATH  Google Scholar 

  13. Lin C (2015) Green’s function for a transversely isotropic multi-layered half-space: an application of the precise integration method. Acta Mech. doi:10.1007/s00707-015-1435-y

  14. Lu J, Hanyga A (2005) Fundamental solution for a layered porous half space subject to a vertical point force or a point fluid source. Comput Mech 35(5):376–391

    Article  MATH  Google Scholar 

  15. Ricketts T, Goldsmith W (1972) Wave propagation in an anisotropic half-space. Int J Rock Mech Min Sci Geomech 9(4):493–500

    Article  Google Scholar 

  16. Wang C-Y, Achenbach J (1993) A new method to obtain 3-D Green’s functions for anisotropic solids. Wave Motion 18(3):273–289

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang C-Y, Achenbach J (1996) Lamb’s problem for solids of general anisotropy. Wave Motion 24(3):227–242

    Article  MATH  MathSciNet  Google Scholar 

  18. Ting T, Lee V-G (1997) The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids. Q J Mech Appl Math 50(3):407–426

    Article  MATH  MathSciNet  Google Scholar 

  19. Gray L, Ghosh D, Kaplan T (1996) Evaluation of the anisotropic Green’s function in three dimensional elasticity. Comput Mech 17(4):255–261

    Article  MathSciNet  Google Scholar 

  20. Pan E, Yuan F (2000) Three-dimensional Green’s functions in anisotropic bimaterials. Int J Solids Struct 37(38):5329–5351

    Article  MATH  Google Scholar 

  21. Yang B, Pan E (2002) Three-dimensional Green’s functions in anisotropic trimaterials. Int J Solids Struct 39(8):2235–2255

    Article  MATH  Google Scholar 

  22. Carcione JJM (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media, vol 38. Elsevier, Amsterdam

    Google Scholar 

  23. Zhong W-X (2004) On precise integration method. J Comput Appl Math 163(1):59–78

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhong W, Zhu J, Zhong X-X (1996) On a new time integration method for solving time dependent partial differential equations. Comput Methods Appl Mech Eng 130(1):163–178

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhong W (2001) Combined method for the solution of asymmetric Riccati differential equations. Comput Methods Appl Mech Eng 191(1):93–102

    Article  Google Scholar 

  26. Zhang J, Gao Q, Tan SJ, Zhong WX (2012) A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact. J Sound Vib 331(21):4763–4773

    Article  Google Scholar 

  27. Zhong WX, Lin J, Gao Q (2004) The precise computation for wave propagation in stratified materials. Int J Numer Methods Eng 60(1):11–25

    Article  MATH  Google Scholar 

  28. Gao Q, Lin JH, Zhong WX, Howson WP, Williams FW (2006) A precise numerical method for Rayleigh waves in a stratified half space. Int J Numer Methods Eng 67(6):771–786

    Article  MATH  Google Scholar 

  29. Lin G, Han Z, Li J (2013) An efficient approach for dynamic impedance of surface footing on layered half-space. Soil Dyn Earthq Eng 49:39–51

    Article  Google Scholar 

  30. Lin C (2015) Dynamic interaction between rigid surface foundations on multi-layered half space. Int J Struct Stab Dyn. doi:10.1142/S0219455415500042

  31. Lin C (2015) Forced vibration of surface foundation on multi-layered half space. Struct Eng Mech 54(4):623–648

    Article  Google Scholar 

  32. Lin G, Han Z, Li J (2015) General formulation and solution procedure for harmonic response of rigid foundation on isotropic as well as anisotropic multilayered half-space. Soil Dyn Earthq Eng 70:48–59

    Article  Google Scholar 

  33. Wikipedia (2015) Principle of original horizontality. http://en.wikipedia.org/wiki/Principle_of_original_horizontality, Accessed date 14 Aug 2015

  34. Ward W, Marsland A, Samuels S (1965) Properties of the London Clay at the Ashford common shaft: in-situ and undrained strength tests*. Geotechnique 15(4):321–344

    Article  Google Scholar 

  35. Atkinson J (1975) Anisotropic elastic deformations in laboratory tests on undisturbed London clay. Geotechnique 25(2):357–374

    Article  Google Scholar 

  36. Abelev AV, Lade PV (2003) Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding. J Eng Mech 129(2):160–166

    Article  Google Scholar 

  37. Barros P (2006) Impedances of rigid cylindrical foundations embedded in transversely isotropic soils. Int J Numer Anal Methods Geomech 30(7):683–702

    Article  MATH  Google Scholar 

  38. Eskandari-Ghadi M, Fallahi M, Ardeshir-Behrestaghi A (2009) Forced vertical vibration of rigid circular disc on a transversely isotropic half-space. J Eng Mech 136(7):913–922

    Article  Google Scholar 

  39. Katebi AA, Khojasteh A, Rahimian M, Pak R (2010) Axisymmetric interaction of a rigid disc with a transversely isotropic half-space. Int J Numer Anal Methods Geomech 34(12):1211–1236

    MATH  Google Scholar 

  40. Kausel E (2006) Fundamental solutions in elastodynamics: a compendium. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. Rokhlin S, Wang L (2002) Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J Acoust Soc Am 112(3):822–834

    Article  MathSciNet  Google Scholar 

  42. Seale SH, Kausel E (1989) Point loads in cross-anisotropic, layered halfspaces. J Eng Mech 115(3):509–524

    Article  Google Scholar 

  43. Andersen L, Clausen J (2008) Impedance of surface footings on layered ground. Comput Struct 86(1):72–87

    Article  Google Scholar 

  44. Hänggi P, Roesel F, Trautmann D (1980) Evaluation of infinite series by use of continued fraction expansions: a numerical study. J Comput Phys 37(2):242–258

    Article  MATH  MathSciNet  Google Scholar 

  45. Auersch L (1994) Wave propagation in layered soils: theoretical solution in wavenumber domain and experimental results of hammer and railway traffic excitation. J Sound Vib 173(2):233–264

    Article  MATH  Google Scholar 

  46. Lucas S (1995) Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J Comput Appl Math 64(3):269–282

    Article  MATH  MathSciNet  Google Scholar 

  47. Chave AD (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48(12):1671–1686

    Article  Google Scholar 

  48. Tewary VK, Mahapatra M, Fortunko CM (1996) Green’s function for anisotropic half-space solids in frequency space and calculation of mechanical admittance. J Acoust Soc Am 100(5):2960–2963

    Article  Google Scholar 

  49. Kausel E, Peek R (1982) Dynamic loads in the interior of a layered stratum: an explicit solution. Bull Seismol Soc Am 72(5):1459–1481

    Google Scholar 

  50. Park J (2002) Wave motion in finite and infinite media using the thin-layer method. Massachusetts Institute of Technology, Massachusetts

    Google Scholar 

Download references

Acknowledgments

The financial support of the Siemens AG and DAAD (German Academic Exchange Service) for the author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. Three-dimensional Green’s function for an anisotropic multi-layered half-space. Comput Mech 56, 795–814 (2015). https://doi.org/10.1007/s00466-015-1203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1203-9

Keywords

Navigation