Skip to main content
Log in

On the simultaneous use of simple geometrically exact shear-rigid rod and shell finite elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work addresses simultaneous use of geometrically exact shear-rigid rod and shell finite elements and describes both models within the same framework. Parameterization of the rotation field is performed by Rodrigues rotation vector, which makes the incremental updating of the rotational variables remarkably simple. For the rod element, cubic Hermitian interpolation for the displacements together with quadratic Lagrange interpolation for the incremental torsion angle were employed, while, for the triangular shell element, a complete quadratic Lagrange interpolation was used. The internal incremental torsion angle resulting from the displacement field within the shell element is then made compatible with the boundary incremental torsion angle of the shell element by an internal Lagrange multiplier. The compatibility between contiguous shell elements as well rod elements is mastered in the standard way by simply connecting nodes. This technique is an important contribution of the work, whose performance is illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Costa e Silva C, Maassen SF, Pimenta PM, Schröder J (2020) A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods. Comput Mech 65:905–923. https://doi.org/10.1007/s00466-019-01800-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Viebahn N, Pimenta PM, Schroeder J (2016) A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy. Comput Mech 59(2):281–297. https://doi.org/10.1007/s00466-016-1343-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: a geometrically exact finite element approach. Int J Numer Methods Eng 78(9):1094–1112. https://doi.org/10.1002/nme.2528

    Article  MathSciNet  MATH  Google Scholar 

  4. Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518. https://doi.org/10.1007/s00466-003-0458-8

    Article  MATH  Google Scholar 

  5. Pimenta PM, Almeida Neto ES, Campello EMB (2010) A fully nonlinear thin shell model of Kirchhoff-Love type. In: De Mattos Pimenta P, Wriggers P (eds) New trends in thin structures: formulation, optimization and coupled problems, vol 519. CISM International Centre for Mechanical Sciences, Springer, Vienna. https://doi.org/10.1007/978-3-7091-0231-2_2

    Chapter  Google Scholar 

  6. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79(1):21–70. https://doi.org/10.1016/0045-7825(90)90094-3

    Article  MATH  Google Scholar 

  7. Basar Y, Ding Y (1992) Finite rotation shell elements for the analysis of finite rotation shell problems. Int J Numer Methods Eng 34:165–169

    Article  Google Scholar 

  8. Eberlein R, Wriggers P (1999) Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Comput Methods Appl Mech Eng 17:243–278

    Article  Google Scholar 

  9. Gruttmann F, Wagner W, Meyer L, Wriggers P (1993) A nonlinear composite shell element with continuous interlaminar shear stresses. Comput Mech 13:175–188

    Article  Google Scholar 

  10. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26(3):1331–1362. https://doi.org/10.1016/0045-7825(81)90121-3

    Article  Google Scholar 

  11. Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193. https://doi.org/10.1007/s00466-004-0564-2

    Article  MATH  Google Scholar 

  12. Kiendl J, Hsu MC, Wu MCH, Reali A (2015) Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303. https://doi.org/10.1016/j.cma.2015.03.010

    Article  MathSciNet  MATH  Google Scholar 

  13. Greco L, Cuomo M, Contrafatto L (2019) Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput Methods Appl Mech Eng 356:354–386. https://doi.org/10.1016/j.cma.2019.07.026

    Article  MATH  Google Scholar 

  14. Argyris JH (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32(1–3):85–155

    Article  MathSciNet  Google Scholar 

  15. Simo JC, Fox DD, Hughes TJR (1992) Formulations of finite elasticity with independent rotations. Comput Methods Appl Mech Eng 95:277–288

    Article  MathSciNet  Google Scholar 

  16. Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. J Appl Math Phys 23(5):795–804

    MATH  Google Scholar 

  17. Antman SS (1974) Kirchhoff’s problem for nonlinearly elastic rods. Q Appl Math 32:221–240

    Article  MathSciNet  Google Scholar 

  18. Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamics. Part I. Comput Methods Appl Mech Eng 49(1):55–70

    Article  Google Scholar 

  19. Gruttmann F, Sauer R, Wagner W (1997) A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections. Comput Methods Appl Mech Eng 160(3–4):383–400

    MATH  Google Scholar 

  20. Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of three-dimensional beams with elastoplastic material behaviour. Int J Numer Methods Eng 48(12):1675–1702

    Article  Google Scholar 

  21. Gruttmann F, Sauer R, Wagner W (1999) Shear stresses in prismatic beams with arbitrary cross-sections. Int J Numer Methods Eng 45(7):865–889

    Article  Google Scholar 

  22. Pimenta PM, Yojo T (1993) Geometrically-exact analysis of spatial frames. Appl Mech Rev ASME 46(11):118–128

    Article  Google Scholar 

  23. Pimenta PM (1996) Geometrically-exact analysis of initially curved rods. In: Topping BHV (ed) Advances in computational techniques for structural engineering, vol 99-108. Civil-Comp Press, Edinburgh

    Google Scholar 

  24. Pimenta PM, Campello EMB (2003) A fully nonlinear multi-parameter rod model incorporating general cross-section in-plane changes and out-of-plane warping. Latin-Am J Solids Struct 1(1):119–140

    Google Scholar 

  25. Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116

    Article  Google Scholar 

  26. Simo JC, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371–393

    Article  MathSciNet  Google Scholar 

  27. Simo JC (1992) The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: intrinsic definition and geometric interpretation. Comput Methods Appl Mech Eng 96:189–200

    Article  MathSciNet  Google Scholar 

  28. Sokolov I, Krylov S, Harari I (2015) Extension of non-linear beam models with deformable cross sections. Comput Mech 56:999–1021

    Article  MathSciNet  Google Scholar 

  29. Armero F, Valverde J (2012) Invariant Hermitian finite elements for thin Kirchhoff rods. I: the linear plane case. Comput Methods Appl Mech Eng 213(216):427–457

    Article  MathSciNet  Google Scholar 

  30. Bauer AM, Breitenberger M, Philipp B, Wüchner R, Bletzinger K-U (2016) Nonlinear isogeometric spatial Bernoulli beam. Comput Methods Appl Mech Eng 303:101–127

    Article  MathSciNet  Google Scholar 

  31. Boyer F, Primault D (2004) Finite element of slender beams in finite transformations: a geometrically exact approach. Int J Numer Methods Eng 59:669–702

    Article  MathSciNet  Google Scholar 

  32. Boyer F, De Nayer G, Leroyer A, Visonneau M (2011) Geometrically exact Kirchhoff beam theory: application to cable dynamics. ASME J Comput Nonlinear Dyn 6(4):041004. https://doi.org/10.1115/1.4003625

    Article  Google Scholar 

  33. Greco L, Cuomo M (2013) B-spline interpolation of Kirchhoff–Love space rods. Comput Methods Appl Mech Eng 256:251–269

    Article  MathSciNet  Google Scholar 

  34. Greco L, Cuomo M (2016) An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput Methods Appl Mech Eng 298:325–349

    Article  Google Scholar 

  35. Meier C, Popp A, Wall WA (2014) An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput Methods Appl Mech Eng 278:445–478

    Article  MathSciNet  Google Scholar 

  36. Meier C, Grill MJ, Wall WA, Popp A (2016) Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures. Int J Solids Struct 154:124–146

    Article  Google Scholar 

  37. Meier C, Popp A, Wall WA (2017) Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory vs. Simo–Reissner theory. Arch Comput Methods Eng 26:1–81

    Google Scholar 

  38. Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: geometrically exact finite element approach. Int J Num Methods Eng 78:1094–1112

    Article  MathSciNet  Google Scholar 

  39. Pimenta PM, Campello EMB (2010) A unified approach for the nonlinear dynamics of rods and shells using an exact conserving integration algorithm. In: de Mattos Pimenta P, Wriggers P (eds) New trends in thin structures: formulation, optimization and coupled problems. Springer, Vienna, pp 99–132. https://doi.org/10.1007/978-3-7091-0231-2_4

    Chapter  MATH  Google Scholar 

  40. Pimenta PM, Campello EMB (2001) Geometrically nonlinear analysis of thin-walled space frames. In: Proceedings of the second european conference on computational mechanics, II ECCM, Cracow, Poland

  41. Simo JC, Hughes TJR (1998) Computational inelasticity, vol 7. Springer, New York

    MATH  Google Scholar 

  42. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Berlin

    Book  Google Scholar 

  43. Sanchez ML, Costa e Silva C, Pimenta PM (2020) A simple fully nonlinear Kirchhoff-Love shell finite element. Latin Am J Solids Struct 17:325–341. https://doi.org/10.1590/1679-78256120

    Article  Google Scholar 

  44. Ivannikov V, Tiago C, Pimenta PM (2015) Generalization of the C1TUBA plate finite elements to the geometrically exact Kirchhoff–Love shell model. Computer Methods Appl Mech Eng 294:210–244. https://doi.org/10.1016/j.cma.2015.05.018

    Article  MATH  Google Scholar 

  45. Campello EMB, Lago LB (2014) Effect of higher order constitutive terms on the elastic buckling of thin-walled rods. Thin Walled Struct 77:8–16

    Article  Google Scholar 

  46. Smolenski WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech Eng 178:89–113

    Article  MathSciNet  Google Scholar 

  47. Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput Mech 42(5):715–732

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the Federal Institute of Science and Technology Education of São Paulo for financial support. The second and fourth authors gratefully acknowledge support by the Mercator Research Center Ruhr in the Project “Mikromechanische Modellierung der Materialumformung zur Vorhersage der anisotropen Verfestigung” (Pr-2015-0049). In addition to that, the author P. M. Pimenta acknowledges the support by CNPq under the Grant 308142/2018-7 as well as expresses his acknowledgement to the Alexander von Humboldt Foundation for the Georg Forster Award that made possible his stays at the Universities of Duisburg-Essen and Hannover in Germany as well as to the French and Brazilian Governments for the Chair CAPES-Sorbonne that made possible his stay at Sorbonne Universités on a leave from the University of São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cátia Costa e Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa e Silva, C., Maassen, S.F., Pimenta, P.M. et al. On the simultaneous use of simple geometrically exact shear-rigid rod and shell finite elements. Comput Mech 67, 867–881 (2021). https://doi.org/10.1007/s00466-020-01967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01967-2

Keywords

Navigation