Skip to main content
Log in

Datadriven HOPGD based computational vademecum for welding parameter identification

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper presents a datadriven framework for parameter identification of welding models. Common identification procedures are based on iterative optimization algorithms which minimize the distance between experimental measures and simulations. The cost of repetitive evaluations of objective functions is prohibitive, especially in welding cases, due to the multiphysics, nonlinear and multiparametric aspects. This is why one proposes to use a novel datadriven approach to improve the efficiency of the inverse identification procedures. Based on a sparse sampling strategy, an a posteriori non-intrusive reduction method, i.e. HOPGD, is used in the offline training stage for constructing the computational vademecum. An online subspace learning method coupled with a global optimization algorithm is proposed for the online search. The efficiency of the proposed method for multiple parameters identification is demonstrated through examples based on a 3D welding model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139(3):153–176

    Article  MATH  Google Scholar 

  2. Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813

    Article  Google Scholar 

  3. Babkin A, Gladkov E (2016) Identification of welding parameters for quality welds in gmaw. Weld J 95(1):37S–46S

    Google Scholar 

  4. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9):667–672

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessa M, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667

    Article  MathSciNet  Google Scholar 

  6. Borzacchiello D, Aguado JV, Chinesta F (2017) Non-intrusive sparse subspace learning for parametrized problems. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-017-9241-4

  7. Bull AD (2011) Convergence rates of efficient global optimization algorithms. J Mach Learn Res 12(Oct):2879–2904

    MathSciNet  MATH  Google Scholar 

  8. Canales D, Leygue A, Chinesta F, González D, Cueto E, Feulvarch E, Bergheau JM, Huerta A (2016) Vademecum-based gfem (v-gfem): optimal enrichment for transient problems. Int J Numer Methods Eng 108(9):971–989

    Article  MathSciNet  Google Scholar 

  9. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    Article  MathSciNet  MATH  Google Scholar 

  10. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  MATH  Google Scholar 

  11. Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, González D, Alfaro I, Ammar A, Huerta A (2013) Pgd-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59

    Article  MathSciNet  MATH  Google Scholar 

  12. Cognard JY, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9(2):141–157

    Article  MATH  Google Scholar 

  13. Courard A, Néron D, Ladeveze P, Andolfatto P, Bergerot A (2013) Virtual charts for shape optimization of structures. In: 2nd ECCOMAS Young investigators conference (YIC 2013)

  14. Ghnatios C, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng 213:29–41

    Article  Google Scholar 

  15. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305

    Article  Google Scholar 

  16. González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283:210–223

    Article  MATH  Google Scholar 

  17. González D, Masson F, Poulhaon F, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data driven inverse identification. Math Comput Simul 82(9):1677–1695

    Article  MathSciNet  Google Scholar 

  18. Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417

    Article  MATH  Google Scholar 

  20. Ibañez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2018) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Comput Methods Eng 25(1):47–57

    Article  MathSciNet  MATH  Google Scholar 

  21. Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladeveze P, Chinesta F (2017) Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput Mech 60(5):813–826

    Article  MathSciNet  MATH  Google Scholar 

  22. Kerfriden P, Gosselet P, Adhikari S, Bordas SPA (2011) Bridging proper orthogonal decomposition methods and augmented newton-krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. Comput Methods Appl Mech Eng 200(5):850–866

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113(11):1697–1710

    Article  MathSciNet  Google Scholar 

  25. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385–482

    Article  MathSciNet  MATH  Google Scholar 

  27. Leygue A, Coret M, Réthoré J, Stainier L, Verron E (2018) Data-based derivation of material response. Comput Methods Appl Mech Eng 331:184–196

    Article  MathSciNet  Google Scholar 

  28. Lu Y, Blal N, Gravouil A (2018) Adaptive sparse grid based hopgd: toward a nonintrusive strategy for constructing space-time welding computational vademecum. Int J Numer Methods Eng 114:1438–1461

    Article  MathSciNet  Google Scholar 

  29. Lu Y, Blal N, Gravouil A (2018) Multi-parametric space-time computational vademecum for parametric studies: application to real time welding simulations. Finite Elements Anal Des 139:62–72

    Article  MathSciNet  Google Scholar 

  30. Lu Y, Blal N, Gravouil A (2018) Space-time pod based computational vademecums for parametric studies: application to thermo-mechanical problems. Adv Model Simul Eng Sci 5(1):3

    Article  Google Scholar 

  31. Maday Y, Patera AT, Turinici G (2002) A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J Sci Comput 17(1–4):437–446

    Article  MathSciNet  MATH  Google Scholar 

  32. Martí R, Lozano JA, Mendiburu A, Hernando L (2016) Multi-start methods. In: Handbook of Heuristics. Springer, pp. 1–21

  33. Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X (2015) Identification of material properties using indentation test and shape manifold learning approach. Comput Methods Appl Mech Eng 297:239–257

    Article  MathSciNet  MATH  Google Scholar 

  34. Meng L, Raghavan B, Bartier O, Hernot X, Mauvoisin G, Breitkopf P (2017) An objective meta-modeling approach for indentation-based material characterization. Mech Mater 107:31–44

    Article  MATH  Google Scholar 

  35. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized decomposition for parameterized helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. Comput Methods Appl Mech Eng 295:127–149

    Article  MathSciNet  MATH  Google Scholar 

  36. Mosavi A, Rabczuk T, Varkonyi-Koczy AR (2017) Reviewing the novel machine learning tools for materials design. In: International conference on global research and education. Springer, pp 50–58

  37. Muránsky O, Smith M, Bendeich P, Holden T, Luzin V, Martins R, Edwards L (2012) Comprehensive numerical analysis of a three-pass bead-in-slot weld and its critical validation using neutron and synchrotron diffraction residual stress measurements. Int J Solids Struct 49(9):1045–1062

    Article  Google Scholar 

  38. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2010) Model order reduction for hyperelastic materials. Int J Numer Methods Eng 81(9):1180–1206

    MathSciNet  MATH  Google Scholar 

  39. Quesada C, González D, Alfaro I, Cueto E, Chinesta F (2016) Computational vademecums for real-time simulation of surgical cutting in haptic environments. Int J Numer Methods Eng 108(10):1230–1247

    Article  MathSciNet  MATH  Google Scholar 

  40. Rajan K (2015) Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 45:153–169

    Article  Google Scholar 

  41. Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229–275

    Article  MathSciNet  MATH  Google Scholar 

  42. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Computat Phys 202(1):346–366

    Article  MathSciNet  MATH  Google Scholar 

  43. Song J, Shanghvi J, Michaleris P (2004) Sensitivity analysis and optimization of thermo-elasto-plastic processes with applications to welding side heater design. Comput Methods Appl Mech Eng 193(42–44):4541–4566

    Article  MATH  Google Scholar 

  44. Vitse M, Néron D, Boucard PA (2014) Virtual charts of solutions for parametrized nonlinear equations. Comput Mech 54(6):1529–1539

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang Y, Combescure A, Gravouil A (2015) Efficient hyper reduced-order model (hrom) for parametric studies of the 3d thermo-elasto-plastic calculation. Finite Elements Anal Des 102:37–51

    Article  MathSciNet  Google Scholar 

  46. Zhang Y, Combescure A, Gravouil A (2017) Efficient hyper-reduced-order model (hrom) for thermal analysis in the moving frame. Int J Numer Methods Eng 111(2):176–200

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge AREVA and SAFRAN for funding of this work within the framework of the “Life extension and manufacturing processes” teaching and research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gravouil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Blal, N. & Gravouil, A. Datadriven HOPGD based computational vademecum for welding parameter identification. Comput Mech 64, 47–62 (2019). https://doi.org/10.1007/s00466-018-1656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1656-8

Keywords

Navigation