Skip to main content
Log in

A LATIN-based model reduction approach for the simulation of cycling damage

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng 102:991–1017

    Article  MathSciNet  MATH  Google Scholar 

  2. Allier P-E, Chamoin L, Ladevèze P (2015) Proper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on constitutive relation error minimization. Adv Model Simul Eng Sci 2:1–25

    Article  Google Scholar 

  3. Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. C R Méc 343:247–263

    Article  Google Scholar 

  4. Atwell JA, King BB (2001) Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math Comput Model 33:1–19

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellenger E, Bussy P (1998) Plastic and viscoplastic damage models with numerical treatment for metal forming processes. J Mater Process Technol 80–81:591–596

    Article  Google Scholar 

  6. Capaldo M, Guidault P-A, Néron D, Ladevèze P (2017) The reference point method, a hyper reduction technique: application to PGD-based nonlinear model reduction. Comput Methods Appl Mech Eng 322:483–514

  7. Carlberg K, Bou-Mosleh C, Farhat C (2010) Efficient nonlinear model reduction via a least-squares petrov-galerkin projection and compressive tensor approximations. Int J Numer Methods Eng 86:155–181

    Article  MATH  Google Scholar 

  8. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78:808–817

    Google Scholar 

  9. Chinesta F, Ladevèze P (eds) (2014) PGD in linear and nonlinear computational solid mechanics. Springer, Vienna, pp 91–152

    Google Scholar 

  10. Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404

    Article  Google Scholar 

  11. Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9:141–157

    Article  MATH  Google Scholar 

  12. Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. Int J Fatigue 28:1677–1689

    Article  Google Scholar 

  13. de Souza Neto E, Perić D, Owen D (2008) Computational methods for plasticity. Wiley, Chichester

    Book  Google Scholar 

  14. El Halabi F, González D, Sanz-Herrera J, Doblaré M (2016) A PGD-based multiscale formulation for non-linear solid mechanics under small deformations. Comput Methods Appl Mech Eng 305:806–826

    Article  MathSciNet  Google Scholar 

  15. Galvis J, Kang SK (2014) Spectral multiscale finite element for nonlinear flows in highly heterogeneous media: a reduced basis approach. J Comput Appl Math 260:494–508

    Article  MathSciNet  MATH  Google Scholar 

  16. González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283:210–223

    Article  MATH  Google Scholar 

  17. Grepl M, Maday Y, Nguyen N, Patera A (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Modél Math Anal Numér 41:575–605

    Article  MathSciNet  MATH  Google Scholar 

  18. Guennouni T (1988) Sur une méthode de calcul de structures soumises à des chargements cycliques : l’homogénéisation en temps. Modél Math Anal Numér 22:417–455

    Article  MathSciNet  MATH  Google Scholar 

  19. Heyberger C, Boucard P-A, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49(3):277–289

    Article  MATH  Google Scholar 

  20. Kachanov LM (1986) Introduction to continuum damage mechanics, mechanics of elastic stability. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Kerfriden P, Gosselet P, Adhikari S, Bordas S (2011) Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adpative model reduction for highly nonlinear mechanical problems. Comput Methods Appl Mech Eng 200:850–866

    Article  MATH  Google Scholar 

  22. Kunish K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation. Comput Math Appl 49(7–8):5730–5742

    MathSciNet  Google Scholar 

  23. Ladevèze P (1989) The large time increment method for the analyse of structures with nonlinear constitutive relation described by internal variables. C R Acad Sci Paris 309:1095–1099

    MATH  Google Scholar 

  24. Ladevèze P (1999) Nonlinear computational structural mechanics, mechanical engineering series. Springer, New York

    Book  Google Scholar 

  25. Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation, mechanical engineering series. Springer, New York

    MATH  Google Scholar 

  26. Ladevèze P (2016) On reduced models in nonlinear solid mechanics. Eur J Mech A Solids 60:227–237

    Article  MathSciNet  MATH  Google Scholar 

  27. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28):3061–3087

    Article  MathSciNet  MATH  Google Scholar 

  28. Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Multiscale methods–bridging the scales in science and engineering. Oxford University Press, Oxford, pp 247–282

  29. Ladevèze P, Passieux J-C, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199:1287–1296

    Article  MathSciNet  MATH  Google Scholar 

  30. Lemaitre J (1985) Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 51:31–49

    Article  MATH  Google Scholar 

  31. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  32. Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin

    Google Scholar 

  33. Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. Int J Fract 97:67–81

    Article  Google Scholar 

  34. Maday Y, Ronquist EM (2004) The reduced-basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258

    Article  MathSciNet  MATH  Google Scholar 

  35. Maitournam H, Pommier B, Thomas J-J (2002) Détermination de la réponse asymptotique d’une structure anélastique sous chargement thermodynamique cyclique. C. R. Mec 330:703–708

    Article  MATH  Google Scholar 

  36. Metoui S, Prulière E, Ammar A, Dau F, Iordanoff I (2014) The proper generalized decomposition for the simulation of delamination using cohesive zone model. Int J Numer Methods Eng 99:1000–1022

    Article  MATH  Google Scholar 

  37. Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, solid mechanics and its applications. Springer, Berlin

    Book  Google Scholar 

  38. Néron D, Boucard P-A, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103:275–292

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen N, Veroy K, Patera A (2005) Certified real-time solution of parametrized partial differential equations, handbook of materials modeling. Springer, Berlin, pp 1523–1558

    Google Scholar 

  40. Prud’homme C, Rovas D, Veroyand K, Machiels L, Maday Y, Patera A, Turinici G (2002) Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng 124:70–80

    Article  Google Scholar 

  41. Relun N, Néron D, Boucard P (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51:83–92

  42. Relun N, Néron D, Boucard P-A (2011) Multiscale elastic-viscoplastic computational analysis. Eur J Comput Mech 20:379–409

    Article  MATH  Google Scholar 

  43. Relun N, Néron D, Boucard P-A (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51:83–92

    Article  MathSciNet  MATH  Google Scholar 

  44. Rozza G (2005) Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity. Appl Numer Math 55(4):403–424

    Article  MathSciNet  MATH  Google Scholar 

  45. Rozza V, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229–275

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruhe A (1983) Numerical aspects of Gram–Schmidt orthogonalization of vectors. Linear Algebra Appl 52:591–601

    Article  MathSciNet  MATH  Google Scholar 

  47. Ryckelynck D, Missoum Benziane D, Cartel S, Besson J (2011) A robust adaptive model reduction method for damage simulations. Comput Mater Sci 50:1597–1605

    Article  Google Scholar 

  48. Stolz C (2008) Optimal control approach in nonlinear mechanics. C. R. Mec 336:238–244

    Article  MATH  Google Scholar 

  49. Veroy K, Patera AT (2005) Certified real-time solution of the parametrized steady incompressible navier-stokes equations: rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids 47:773–788

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the German Research Foundation (DFG) for funding the research through International Research Training Group 1627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, M., Fau, A., Nackenhorst, U. et al. A LATIN-based model reduction approach for the simulation of cycling damage. Comput Mech 62, 725–743 (2018). https://doi.org/10.1007/s00466-017-1523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1523-z

Keywords

Navigation