Skip to main content
Log in

Simulation of finite-strain inelastic phenomena governed by creep and plasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent \(J_2\) plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Roylance DK (1996) Mechanics of materials. Wiley, New York

    Google Scholar 

  2. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Elmsford

    Google Scholar 

  3. Anderson PM, Foecke T, Hazzledine PM (1999) Dislocation-based deformation mechanisms in metallic nanolaminates. Mech Behav Nanostruct Mater 24(02):27–33

    Google Scholar 

  4. Passchier CW, Trouw RAJ (1998) Microtectonics. Springer, Berlin

    Book  Google Scholar 

  5. Lubliner J (2008) Plasticity theory. Dover, Mineola

    MATH  Google Scholar 

  6. Yalçinkaya T, Brekelmans WAM, Geers MGD (2012) Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int J Solids Struct 49(18):2625–2636

    Article  Google Scholar 

  7. Yalçinkaya T, Brekelmans WAM, Geers MGD (2015) Stress and deformation heterogeneity in individual grains within polycrystals subjected to fully reversed cyclic loading. J Mech Phys Solids 79:157–185

    Article  MathSciNet  Google Scholar 

  8. Osakada K (2008) History of plasticity and metal forming analysis. In: ICTP 2008 (the 9th international conference on technology of plasticity)

  9. Peng CT, Liu CM, Lin JC, Cheng HC (2004) Reliability analysis and design for the fine-pitch flip chip BGA packaging. IEEE Trans Compon Packag Technol 27(4):684–693

    Article  Google Scholar 

  10. Pang JHL, Chong DYR (2001) Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models. IEEE Trans Adv Packag 24(4):499–506

    Article  Google Scholar 

  11. Alberg H, Berglund D (2003) Comparison of plastic, viscoplastic, and creep models when modelling welding and stress relief heat treatment. Comput Methods Appl Mech Eng 192(49–50):5189–5208

    Article  MATH  Google Scholar 

  12. Board National Transportation Safety (2006) Highway accident report: ceiling collapse in the interstate 90 connector tunnel Boston, Massachusetts, July 10, 2006. Technical report, Washington, DC

  13. Ford H, Alexander JM (1963) Advanced mechanics of materials. Longmans, London

    Google Scholar 

  14. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  15. Simo JC, Taylor RL (1985) Consistant tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Article  MATH  Google Scholar 

  16. Simo JC, Ortiz M (1985) A unified approach to finite deforamtion elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49:221–245

    Article  MATH  Google Scholar 

  17. Weber G, Anand L (1990) Finite deformation constitutive equations and a time interation procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202

    Article  MATH  Google Scholar 

  18. Norton FH (1929) The creep of steel at high temperatures. McGraw-Hill, London

    Google Scholar 

  19. Hofter A, Broeckmann C, Berns H (2002) Creep of high speed steel part II—numerical Simulation. In: 6th International tooling conference

  20. Hosseini E, Holdsworth SR, Mazza E (2012) Creep constitutive model considerations for high-temperature finite element numerical simulations. J Strain Anal Eng Des 47:341–349

    Article  Google Scholar 

  21. Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(4):41–104

    Article  MATH  Google Scholar 

  22. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26–27):3455–3482

    Article  MATH  Google Scholar 

  23. Roehl D, Ramm E (1996) Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int J Solids Struct 33(20–22):3215–3237

    Article  MathSciNet  MATH  Google Scholar 

  24. Shirley DR, Ghorbani HR, Spelt JK (2008) Effect of primary creep and plasticity in the modeling of thermal fatigue of SnPb and SnAgCu solder joints. Microelectron Reliab 48:455–470

    Article  Google Scholar 

  25. Shirley DR, Spelt JK (2009) Primary creep in Sn–3.8Ag–0.7Cu solder, part II: constitutive creep model development and finite element analysis. J Electr Mater 38(11):2388–2397

    Article  Google Scholar 

  26. Ohguchi K, Sasaki K, Ishibashi M, Hoshino T (2004) Plasticity-creep separation method for viscoplastic deformation of solders. JSME Int J 47(3):371–379

    Article  Google Scholar 

  27. Ohguchi K, Sasaki K (2003) Elastic-plastic-creep simulation of Pb/Sn solder alloys by separation of plastic and creep. JSME Int J 46(4):559–566

    Article  Google Scholar 

  28. Snyder MD, Bathe K-J (1981) A solution proecdure for thermo-elastic-plastic and creep problems. Nucl Eng Des 64:49–80

    Article  Google Scholar 

  29. Brown SB, Kim KH, Anand L (1989) An internal variable constitutive model for hot working of metals. Int J Plast 5:95–130

    Article  MATH  Google Scholar 

  30. Wang GZ, Cheng ZN, Becker K, Wilde J (1998) Applying Anand model to represent the viscoplastic deformation behavior of solder alloys. J Electron Packag 123(3):247–253

    Article  Google Scholar 

  31. Lee YJ (2006) Viscoplastic finite-element simulation to predict the solder joint fatigue life of different flash memory die stacking architectures. Master’s thesis, The University of Texas at Arlington

  32. Salinger AG, Bartlett RA, Bradley AM, Chen Q, Demeshko IP, Gao X, Hansen GA, Mota A, Muller RP, Nielsen E, Ostien JT, Pawlowski RP, Perego M, Phipps ET, Sun W, Tezaur IK (2016) Albany: using component-based design to develop a flexible, generic multiphysics analysis code. Int J Multiscale Comput Eng 14(4):414–438

    Article  Google Scholar 

  33. Simo JC (1985) On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity. Mech Mater 4(3–4):439–451

    Article  Google Scholar 

  34. Gurtin ME, Williams WO (1966) On the clausius-duhem inequality. Zeitschrift fur Angewandte Mathematik und Physik ZAMP 17:626–663

    Article  Google Scholar 

  35. Haslach HW Jr (2011) Maximum dissipation non-equilibrium thermodynamics and its geometric structure. Springer, New York

    Book  MATH  Google Scholar 

  36. Luenberger David G (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley, Reading

    MATH  Google Scholar 

  37. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Pubilication, Mineola

    MATH  Google Scholar 

  38. Phipps E, Pawlowski R (2012) Efficient expression templates for operator overloading-based automatic differentiation. Lect Notes Comput Sci Eng 87(1):309–319

    Article  MATH  Google Scholar 

  39. Du Y (2015) Mechanical properties characterization of lead-free solder bump and ultra-low-K dielectrics by nanoindentation. Ph.D. Thesis, University of Texas at Dallas

  40. Yoshihiko K, Yoshiharu K (2012) Evaluation of creep properties for Sn–Ag–Cu micro solder joint by multi-temperature stress relaxation test. Microelectron Reliab 52(7):1435–1440

    Article  Google Scholar 

  41. Yoshihiko K, Yoshiharu K (2010) Influence of asymmetrical waveform on low-cycle fatigure life of micro solder joint. J Electron Mater 39(2):238–245

  42. Yoshihiko K, Yoshiharu K, Yusuke M (2008) Effect of hold time on low-cycle fatigue life of micro solder joint. Mater Trans 49(7):1524–1530

  43. Lau JH (1995) Ball grid array technology. McGraw-Hill, New York City

  44. Bloomfield Max O, Li Zhen, Granzow Brian, Ibanez Daniel A, Oberai Assad A, Hansen Glen A, Liu Xiao Hu, Shephard Mark S (2017) Component-based workflows for parallel thermomechanical analysis of arrayed geometries. Eng Comput 33(3):509–517

    Article  Google Scholar 

  45. Elenius P, Levine L (2000) Comparing flip-chip and wire-bond interconnection technologies. Chip Scale Rev 4:81

  46. Blue Gene/Q. https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q

  47. Measuring Parallel Scaling Performance. https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance

  48. Bondi AB (2000) Characteristics of scalability and their impact on performance. In: Proceedings of the second international workshop on Software and performance WOSP ’00, p 195

  49. Vahdat A, Yocum K, Walsh K, Mahadevan P, Kosti D, Chase J, Becker D (2002) Scalability and accuracy in a large-scale network emulator. ACM SIGOPS Oper Syst Rev 36(SI):271–284

    Article  Google Scholar 

  50. Hill MD (1990) What is scalability? ACM SIGARCH Comput Archit News 18(4):18–21

    Article  Google Scholar 

  51. Kerbyson DJ, Alme HJ, Hoisie A, Petrini F, Wasserman HJ, Gittings M (2001) Predictive performance and scalability modeling of a large-scale application. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing, Chicago, pp 37–37

  52. Sahni Onkar, Carothers Christopher D, Shephard Mark S, Jansen Kenneth E (2009) Strong scaling analysis of a parallel, unstructured, implicit solver and the influence of the operating system interference. SIAM J Sci Comput 17(3):261–274

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of IBM Corporation in the performance of this research. The authors would also like to acknowledge the support of the Center for Computational Innovations (CCI), at Rensselaer Polytechnic Institute, for computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Appendix A

Appendix A

1.1 Objectivity of discrete Kirchhoff stress tensor \({{\varvec{\tau }}}\)

The expression for the updated Kirchhoff stress is given by (94). Since the Kirchhoff stress is a measure of stress in the current configuration, in order ensure material frame indifference it must transform as,

$$\begin{aligned} {{\varvec{\tau }}}_{n+1}^* = {\mathbf {Q}}{{\varvec{\tau }}}_{n+1}{\mathbf {Q}}^T, \end{aligned}$$
(107)

when the incremental deformation gradient is superposed with a rotation \({\mathbf {Q}}\),

$$\begin{aligned} \mathbf {f}_{n+1}^* = {\mathbf {Q}}\mathbf {f}_{n+1}. \end{aligned}$$
(108)

In the development below we prove that this is indeed the case for our algorithm.

Proof

Since: \(\bar{\mathbf{f}}_{n+1} = \left[ \det \mathbf {f}_{n+1}\right] ^{-\frac{1}{3}}\mathbf {f}_{n+1}\), so if \(\mathbf {f}_{n+1}^* = {\mathbf {Q}}\mathbf {f}_{n+1}\), from (108) we have

$$\begin{aligned} \bar{\mathbf{f}}_{n+1}^*= & {} \left[ \det \mathbf {f}_{n+1}^*\right] ^{-\frac{1}{3}}\mathbf {f}_{n+1}^* \nonumber \\= & {} \left[ \det {\mathbf {Q}}\mathbf {f}_{n+1} \right] ^{-\frac{1}{3}} {\mathbf {Q}}\mathbf {f}_{n+1} \nonumber \\= & {} \left[ \det \mathbf {f}_{n+1} \right] ^{-\frac{1}{3}} {\mathbf {Q}}\mathbf {f}_{n+1} \nonumber \\= & {} {\mathbf {Q}} \left[ \det \mathbf {f}_{n+1} \right] ^{-\frac{1}{3}} \mathbf {f}_{n+1} \nonumber \\= & {} {\mathbf {Q}} \bar{\mathbf{f}}_{n+1}. \end{aligned}$$
(109)

Further, from (68) we have

$$\begin{aligned} \bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial *}= & {} \bar{\mathbf{f}}_{n+1}^*\bar{\mathbf{b}}_{n}^\mathrm{e}\bar{\mathbf{f}}_{n+1}^{T*} \nonumber \\= & {} {\mathbf {Q}} \bar{\mathbf{f}}_{n+1}\bar{\mathbf{b}}_{n}^\mathrm{e}[{\mathbf {Q}} \bar{\mathbf{f}}_{n+1}]^T \nonumber \\= & {} {\mathbf {Q}} \bar{\mathbf{f}}_{n+1}\bar{\mathbf{b}}_{n}^\mathrm{e} \bar{\mathbf{f}}_{n+1}^T {\mathbf {Q}}^T \nonumber \\= & {} {\mathbf {Q}} \bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial} {\mathbf {Q}}^T. \end{aligned}$$
(110)

From this we also conclude that

$$\begin{aligned} \mathrm{tr}\,[\bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial*}]= & {} \hbox {tr}\,[{\mathbf {Q}}\bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial*} {\mathbf {Q}}^T] \nonumber \\= & {} \mathrm{tr}\,[\bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial}], \mathrm{since } \, \mathrm{tr}[\cdot ]\,\, \hbox {is invariant under rotation}. \nonumber \\ \end{aligned}$$
(111)

From (70) we have

$$\begin{aligned} \mathbf {s}_{n+1}^\mathrm{trial*}= & {} \mu \, \hbox {dev} \, [\bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial *}] \nonumber \\= & {} \mu \, \big ( \bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial *} - \frac{1}{3} \hbox {tr}\,[\bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial *}]{\mathbf {Q}}\mathbf {1}{\mathbf {Q}}^\mathrm{T} \big ) \nonumber \\= & {} \mu \, {\mathbf {Q}} \big ( \bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial} - \frac{1}{3} \hbox {tr}\,[\bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial}]\mathbf {1}\big ){\mathbf {Q}}^\mathrm{T} \nonumber \\= & {} {\mathbf {Q}} \mathbf {s}_{n+1}^\mathrm{trial} {\mathbf {Q}}^T. \end{aligned}$$
(112)

Since the superposed deformation is a rigid body rotation, we have \(J_{n+1}^* = J_{n+1}\), and from (71)

$$\begin{aligned} p_{n+1}^*= & {} \frac{\kappa }{2} (J_{n+1}^{*2} - 1) /J_{n+1}^{*} \nonumber \\= & {} \frac{\kappa }{2} (J_{n+1}^2 - 1) /J_{n+1} \nonumber \\= & {} p_{n+1}. \end{aligned}$$
(113)

Further, we have

$$\begin{aligned} \alpha _{n+1}^\mathrm{trial*} = \alpha _n = \alpha _{n+1}^\mathrm{trial}. \end{aligned}$$
(114)

Thus we conclude that the trial Kirchhoff stress \({{\varvec{\tau }}}\) transforms objectively, since from (94), we have

$$\begin{aligned} {{\varvec{\tau }}}_{n+1}^\mathrm{trial*}= & {} p_{n+1}^* J_{n+1}^*\mathbf {1}^* + \mathbf {s}_{n+1}^\mathrm{trial*} - \beta ( T ( \mathbf {X}, t_{n+1})-T_0 )\mathbf {1}^* J_{n+1}^* \nonumber \\= & {} p_{n+1} J_{n+1} {\mathbf {Q}} \mathbf {1} {\mathbf {Q}}^T + {\mathbf {Q}} \mathbf {s}_{n+1}^\mathrm{trial} {\mathbf {Q}}^T \nonumber \\&- \beta ( T ( \mathbf {X}, t_{n+1})-T_0 ){\mathbf {Q}} \mathbf {1} {\mathbf {Q}}^T J_{n+1} \nonumber \\= & {} {\mathbf {Q}} \big ( p_{n+1} J_{n+1}\mathbf {1} + \mathbf {s}_{n+1}^\mathrm{trial} \nonumber \\&- \beta ( T ( \mathbf {X}, t_{n+1})-T_0 )\mathbf {1} J_{n+1} \big ) {\mathbf {Q}}^T \nonumber \\= & {} {\mathbf {Q}} {{\varvec{\tau }}}_{n+1}^\mathrm{trial} {\mathbf {Q}}^T. \end{aligned}$$
(115)

From (83), the “direction” of the updated Kirchhoff stress is given by,

$$\begin{aligned} \mathbf {n}_{n+1}^\mathrm{trial*}= & {} \frac{\mathbf {s}_{n+1}^\mathrm{trial*}}{\Vert \mathbf {s}_{n+1}^\mathrm{trial*}\Vert } \nonumber \\= & {} \frac{{\mathbf {Q}} \mathbf {s}_{n+1}^\mathrm{trial} {\mathbf {Q}}^T}{\Vert \mathbf {s}_{n+1}^\mathrm{trial} \Vert } \nonumber \\= & {} {\mathbf {Q}} \mathbf {n}_{n+1}^\mathrm{trial} {\mathbf {Q}}^T\nonumber \\= & {} {\mathbf {Q}} \mathbf {n}_{n+1} {\mathbf {Q}}^T. \end{aligned}$$
(116)

Now we consider the increment of inelastic strain.

For pure creep, from (88), the increment of the creep strain transforms like

$$\begin{aligned} \varDelta {\gamma ^\mathrm{cr}}^*= & {} \varDelta t \gamma _{n+1}^\mathrm{cr*} \nonumber \nonumber \\= & {} \varDelta t B_{n+1} \left[ \Vert \mathbf {s}_{n+1}^\mathrm{trial*}\Vert - \frac{2}{3} \mu \varDelta {\gamma ^\mathrm{cr*}} \text{ tr }\left[ \bar{\mathbf{b}}_{n+1}^\mathrm{e\,trial *}\right] \right] ^{c_1} \nonumber \\= & {} \varDelta t B_{n+1} \left[ \Vert \mathbf {s}_{n+1}^\mathrm{trial}\Vert - \frac{2}{3} \mu \varDelta {\gamma ^\mathrm{cr*}} \text{ tr }\left[ \bar{\mathbf{b}}_{n+1}^\mathrm{e\,trial}\right] \right] ^{c_1}.\nonumber \\ \end{aligned}$$
(117)

We note the equation for \(\varDelta \gamma ^\mathrm{cr*}\) above, is the same as the equation for \(\varDelta \gamma ^\mathrm{cr}\) (88). Consequently, \(\varDelta {\gamma }^\mathrm{cr*} = \varDelta {\gamma }^\mathrm{cr}\).

Next we consider plasticity and creep. From (90), we have

$$\begin{aligned} \bar{\mu }^* = \frac{1}{3}\mu \, \text{ tr }\left[ \bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial *}\right] = \frac{1}{3}\mu \, \text{ tr }\left[ \bar{\mathbf{b}}_{n+1}^\mathrm{e\;trial}\right] . \end{aligned}$$
(118)

From (73), we have

$$\begin{aligned} {f}^\mathrm{trial*}_{n+1}= & {} {f}({{\varvec{\tau }}}^\mathrm{trial*}_{n+1}, \alpha _{n+1}^*) \nonumber \\= & {} \Vert \mathbf {s}^\mathrm{trial*}_{n+1}\Vert - \sqrt{\frac{2}{3}}(\sigma _{Y} +K \alpha _{n+1}^\mathrm{trial*}) \nonumber \\= & {} \Vert \mathbf {s}^\mathrm{trial}_{n+1}\Vert - \sqrt{\frac{2}{3}}(\sigma _{Y} +K \alpha _{n+1}^\mathrm{trial}) \nonumber \\= & {} {f}^\mathrm{trial}_{n+1}. \end{aligned}$$
(119)

Form (93), the equation for \(\varDelta \gamma ^*\) is given by,

$$\begin{aligned}&f_{n+1}^\mathrm{trial*} - 2\bar{\mu }^*\left( 1+\frac{K}{3\bar{\mu }^*}\right) \varDelta \gamma ^* \nonumber \\&\quad = 2\bar{\mu }^*\varDelta t B \left( \Vert \mathbf {s}_{n+1}^\mathrm{trial*} \Vert - f_{n+1}^\mathrm{trial*} + \frac{2}{3}K\varDelta \gamma ^* \right) ^{c_1},\nonumber \\&\Rightarrow \,\,\, f_{n+1}^\mathrm{trial} - 2\bar{\mu }\left( 1+\frac{K}{3\bar{\mu }}\right) \varDelta \gamma ^* \nonumber \\&\quad = 2\bar{\mu }\varDelta t B \left( \Vert \mathbf {s}_{n+1}^\mathrm{trial} \Vert - f_{n+1}^\mathrm{trial} + \frac{2}{3}K\varDelta \gamma ^* \right) ^{c_1}. \end{aligned}$$
(120)

By comparing (120) with (93), we conclude that the equations for \(\varDelta \gamma ^*\) and \(\varDelta \gamma \) are the same, and therefore, \(\varDelta \gamma ^* = \varDelta \gamma \).

From (83), for the deviatoric part of Kirchhoff stress, we have

$$\begin{aligned} \mathbf {s}_{n+1}^*= & {} \Vert \mathbf {s}_{n+1}^* \Vert \mathbf {n}_{n+1}^\mathrm{trial*} \nonumber \\= & {} \bigg [ \Vert \mathbf {s}_{n+1}^\mathrm{trial*}\Vert - \frac{2}{3} \mu \left( \varDelta \gamma ^* + \varDelta {\gamma ^\mathrm{cr*}} \right) \text{ tr }\left[ \bar{\mathbf{b}}_{n+1}^\mathrm{e\,trial*}\right] \bigg ] \mathbf {n}_{n+1}^\mathrm{trial*} \nonumber \\= & {} \bigg [ \Vert \mathbf {s}_{n+1}^\mathrm{trial}\Vert - \frac{2}{3} \mu \left( \varDelta \gamma + \varDelta {\gamma ^\mathrm{cr}} \right) \text{ tr }\left[ \bar{\mathbf{b}}_{n+1}^\mathrm{e\,trial}\right] \bigg ] {\mathbf {Q}} \mathbf {n}_{n+1}^\mathrm{trial} {\mathbf {Q}}^T \nonumber \\= & {} {\mathbf {Q}} \mathbf {s}_{n+1} {\mathbf {Q}}^T. \end{aligned}$$
(121)

In the equation above, we have made use of several results derived in this section.

Finally, form the definition of Kirchhoff stress (94) we have,

$$\begin{aligned} {{\varvec{\tau }}}_{n+1}^*= & {} p_{n+1}^* J_{n+1}^*\mathbf {1} + \mathbf {s}_{n+1}^* - \beta ( T^* ( \mathbf {X}, t_{n+1}) - T_0 ) \mathbf {1} J_{n+1}^* \nonumber \\= & {} p_{n+1} J_{n+1} \mathbf {1} + {\mathbf {Q}} \mathbf {s}_{n+1} {\mathbf {Q}}^T \nonumber \\&- \beta ( T ( \mathbf {X}, t_{n+1}) - T_0 ) \mathbf {1} J_{n+1} \nonumber \\= & {} {\mathbf {Q}} \bigg ( p_{n+1} J_{n+1}\mathbf {1} + \mathbf {s}_{n+1} \nonumber \\&- \beta ( T ( \mathbf {X}, t_{n+1}) - T_0 ) \mathbf {1} J_{n+1} \bigg ) {\mathbf {Q}}^T \nonumber \\= & {} {\mathbf {Q}} {{\varvec{\tau }}}_{n+1} {\mathbf {Q}}^T. \end{aligned}$$
(122)

This concludes our proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Bloomfield, M.O. & Oberai, A.A. Simulation of finite-strain inelastic phenomena governed by creep and plasticity. Comput Mech 62, 323–345 (2018). https://doi.org/10.1007/s00466-017-1499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1499-8

Keywords

Navigation