Skip to main content
Log in

Automatic image-based analyses using a coupled quadtree-SBFEM/SCM approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Quadtree-based domain decomposition algorithms offer an efficient option to create meshes for automatic image-based analyses. Without introducing hanging nodes the scaled boundary finite element method (SBFEM) can directly operate on such meshes by only discretizing the edges of each subdomain. However, the convergence of a numerical method that relies on a quadtree-based geometry approximation is often suboptimal due to the inaccurate representation of the boundary. To overcome this problem a combination of the SBFEM with the spectral cell method (SCM) is proposed. The basic idea is to treat each uncut quadtree cell as an SBFEM polygon, while all cut quadtree cells are computed employing the SCM. This methodology not only reduces the required number of degrees of freedom but also avoids a two-dimensional quadrature in all uncut quadtree cells. Numerical examples including static, harmonic, modal and transient analyses of complex geometries are studied, highlighting the performance of this novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. Cells intersected by the boundary of the physical domain. In the literature often also referred to as broken cells.

  2. Cut leaf cells are the smallest cells of a quadtree decomposition that have no children (leaf). They are typically intersected by the physical boundary of the domain (cut). These cells are responsible for the approximation of the geometry of the computational domain.

  3. The point \(\xi =0\) is commonly referred to as scaling center in the context of the SBFEM.

  4. Using the same set of shape functions for the interpolation in Eqs. (1) and (3) means that isoparametric elements are employed on the boundary which is a common but not necessary assumption. Furthermore, it is not required to use nodal shape functions, though Lagrange shape functions are the most common choice in the context of the SBFEM.

  5. \(\varepsilon ^*\): IEEE 754 machine precision = \(2^{-53} \approx 1.16\times 10^{-16}\).

  6. In a spacetree decomposition scheme each cell that has no children is referred to as leaf cell. In contrast, the cell representing the whole domain is commonly denoted as root cell.

  7. Here, the Gauss–Lobatto–Legendre integration rule is applied, and thus for the regular elements, the nodes coincide with the displayed quadrature points.

  8. This issue could be partly alleviated by an anisotropic FCM approach based on integrated Legendre polynomials as shape functions. Here, the polynomial degrees for the edge modes and bubble modes can be chosen independently such that homogeneous domains are approximated with a lower polynomial degree [20].

  9. Leaf cells of the quadtree decomposition.

Abbreviations

BEM:

Boundary element method

BVP:

Boundary value problem

CAD:

Computer-aided design

CT:

Computed tomography

DOF:

Degrees of freedom

EOM:

Equation of motion

FCM:

Finite cell method

FDC:

Fictitious domain concept

FEM:

Finite element method

FE:

Finite element

GLL:

Gauss–Lobatto–Legendre (integration points)

IGA:

Isogeometric analysis

NURBS:

Non-uniform rational B-splines

ODE:

Ordinary differential equation

PDE:

Partial differential equation

SBFEM:

Scaled boundary finite element method

SBFE:

Scaled boundary finite element

SCM:

Spectral cell method

SD:

Subdomain

SEM:

Spectral element method

XFEM:

Extended finite element method

References

  1. Ansys, Inc. (2015) Ansys, version 16.2 [computer program]. ANSYS\(\textregistered \) Academic Research

  2. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10:1350002

    Article  MATH  MathSciNet  Google Scholar 

  3. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the \(J_2\) flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  MATH  Google Scholar 

  4. Abedian A, Parvizian J, Düster A, Rank E (2014) The FCM compared to the h-version FEM for elasto-plastic problems. Appl Math Mech 35:1239–1248

    Article  Google Scholar 

  5. Antonietti PF, Mazzieri I, Quarteroni A, Rapetti F (2012) Non-conforming high order approximations of the elastodynamics equation. Comput Methods Appl Mech Eng 209–212:212–238

    Article  MATH  MathSciNet  Google Scholar 

  6. Beer G, Bordas S (eds) (2015) Isogeometric methods for numerical simulation. CISM international centre for mechanical sciences, vol 561. Springer, Vienna

  7. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17:1–24

    Article  MATH  Google Scholar 

  8. Bielak J, Ghattas O, Kim EJ (2005) Parallel octree-based finite element method for large-scale earthquake ground motion simulation. Comput Model Eng Sci 10(2):99–112

    MATH  MathSciNet  Google Scholar 

  9. Birk C, Prempramote S, Song C (2012) An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains. Int J Numer Methods Eng 89:269–298

    Article  MATH  MathSciNet  Google Scholar 

  10. Birk C, Song C (2009) A continued-fraction approach for transient diffusion in unbounded medium. Comput Methods Appl Mech Eng 198:2576–2590

    Article  MATH  Google Scholar 

  11. Chen D, Birk C, Song C, Du C (2014) A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method. Int J Numer Methods Eng 97:937–959

    Article  MATH  MathSciNet  Google Scholar 

  12. Chiong I, Ooi ET, Song C, Tin-Loi F (2014) Computation of dynamic stress intensity factors in cracked functionally graded materials using scaled boundary polygons. Eng Fract Mech 131:210–231

    Article  MATH  Google Scholar 

  13. Chiong I, Ooi ET, Song C, Tin-Loi F (2014) Scaled boundary polygons with applications to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98:562–589

    Article  MATH  MathSciNet  Google Scholar 

  14. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  15. Dauge M, Düster A, Rank E (2015) Theoretical and numerical investigation of the finite cell method. J Sci Comput 65:1039–1064

    Article  MATH  MathSciNet  Google Scholar 

  16. Deeks AJ, Wolf JP (2002) A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech 28:489–504

    Article  MATH  MathSciNet  Google Scholar 

  17. Duczek S (2014) Higher order finite elements and the fictitious domain concept for wave propagation analysis. VDI Fortschritt-Berichte Reihe 20 Nr. 458

  18. Duczek S, Joulaian M, Düster A, Gabbert U (2014) Numerical analysis of Lamb waves using the finite and spectral cell methods. Int J Numer Methods Eng 99:26–53

    Article  MATH  MathSciNet  Google Scholar 

  19. Duczek S, Liefold S, Gabbert U (2015) The finite and spectral cell methods for smart structure applications: transient analysis. Acta Mech 226:845–869

    Article  MATH  MathSciNet  Google Scholar 

  20. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703

    Article  MATH  Google Scholar 

  21. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MATH  MathSciNet  Google Scholar 

  22. Düster A, Rank E (2001) The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput Methods Appl Mech Eng 190:1925–1935

    Article  MATH  Google Scholar 

  23. Fish J, Belytschko T (2007) A first course in finite elements. Wiley, New York

    Book  MATH  Google Scholar 

  24. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304

    MATH  MathSciNet  Google Scholar 

  25. Fries TP, Byfut A, Alizada A, Cheng KW, Schröder A (2011) Hanging nodes and XFEM. Int J Numer Methods Eng 86:404–430

    Article  MATH  MathSciNet  Google Scholar 

  26. Glowinski R, Kuznetsov Y (2007) Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498–1506

    Article  MATH  MathSciNet  Google Scholar 

  27. Gravenkamp H, Birk C, Song C (2014) Numerical modeling of elastic waveguides coupled to infinite fluid media using exact boundary conditions. Comput Struct 141:36–45

    Article  Google Scholar 

  28. Gravenkamp H, Birk C, Song C (2015) Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J Comput Phys 295:438–455

    Article  MATH  MathSciNet  Google Scholar 

  29. Gravenkamp H, Birk C, Van J (2015) Modeling ultrasonic waves in elastic waveguides of arbitrary cross-section embedded in infinite solid medium. Comput Struct 149:61–71

    Article  Google Scholar 

  30. Gravenkamp H, Natarajan S, Dornisch W (2017) On the use of nurbs-based discretizations in the scaled boundary finite element method for wave propagation problems. Comput Methods Appl Mech Eng 315:867–880

    Article  MathSciNet  Google Scholar 

  31. Gravenkamp H, Prager J, Saputra AA, Song C (2012) The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method. J Acoust Soc Am 132(3):1358–1367

    Article  Google Scholar 

  32. Gravenkamp H, Saputra AA, Song C, Birk C (2016) Efficient wave propagation simulation on quadtree meshes using SBFEM with reduced modal basis. Int J Numer Methods Eng, pp 1–23. arXiv:10.1002/nme.5445

  33. Gupta AK (1978) A finite element for transition from a finite grid to a coarse grid. Int J Numer Methods Eng 12:35–45

    Article  MATH  Google Scholar 

  34. He CH, Wang JT, Zhang CH, Jin F (2014) Simulation of broadband seismic ground motions at dam canyons by using a deterministic numerical approach. Soil Dyn Earthq Eng 76:136–144

    Article  Google Scholar 

  35. He Y, Yang H, Deeks AJ (2014) Use of Fourier shape functions in the scaled boundary method. Eng Anal Bound Elem 41:152–159

    Article  MATH  MathSciNet  Google Scholar 

  36. Heinze S, Joulaian M, Düster A (2015) Numerical homogenization of hybrid metal foams using the finite cell method. Comput Math Appl 70(7):1501–1517

    Article  MathSciNet  Google Scholar 

  37. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  38. Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54:661–675

    Article  MATH  MathSciNet  Google Scholar 

  39. Joulaian M, Düster A (2013) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52:741–762

    Article  MATH  Google Scholar 

  40. Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139:806–822

    Article  Google Scholar 

  41. Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation I. Validation. Int J Geophys 149:390–412

    Article  Google Scholar 

  42. Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation II. Three-dimensional models, oceans, rotation and self-gravitation. Int J Geophys 150:303–318

    Article  Google Scholar 

  43. Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sánchez-Sesma FJ (1999) The spectral element method for elastic wave equations—application to 2-d and 3-d seismic problems. Int J Numer Methods Eng 45:1139–1164

    Article  MATH  Google Scholar 

  44. Krome F, Gravenkamp H (2017) A semi-analytical curved element for linear elasticity based on the scaled boundary finite element method. Int J Numer Methods Eng 109:790–808

    Article  MathSciNet  Google Scholar 

  45. Legrain G, Allais R, Cartraud P (2011) On the use of the extended finite element method with quadtree/octree meshes. Int J Numer Methods Eng 86:717–743

    Article  MATH  MathSciNet  Google Scholar 

  46. Lehmann L, Langer S, Clasen D (2006) Scaled boundary finite element method for acoustics. J Comput Acoust 14(4):489–506

    Article  MATH  MathSciNet  Google Scholar 

  47. Lengsfeld M, Schmitt J, Alter P, Kaminsky J, Leppek R (1998) Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Med Eng Phys 20:515–522

    Article  Google Scholar 

  48. Lian WD, Legrain G, Cartraud P (2013) Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches. Comput Mech 51:279–293

    Article  MATH  MathSciNet  Google Scholar 

  49. Liu J, Lin G (2011) Analysis of a quadrupole corner-cut ridged/vane-loaded circular waveguide using scaled boundary finite element method. Prog Electromagn Res 17:113–133

    Article  Google Scholar 

  50. Lo SH, Wu D, Sze KY (2012) Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements. Finite Elem Anal Des 46:2–16

    Article  MathSciNet  Google Scholar 

  51. Man H, Song C, Natarajan S, Ooi ET, Birk C (2014) Towards automatic stress analysis using scaled boundary finite element method with quadtree mesh of high-order elements. arXiv:1402.5186 [math.NA]

  52. Manzini G, Russo A, Sukumar N (2014) New perspectives on polygonal and polyhedral finite element methods. Math Models Methods Appl Sci 24:1665–1699

    Article  MATH  MathSciNet  Google Scholar 

  53. Mazzieri I, Stupazzini M, Guidotti R, Smerzini C (2013) SPEED: spectral elements in elastodynamics with discontinuous Galerkin: a non-conforming approach for 3D multi-scale problems. Int J Numer Methods Eng 95:991–1010

    Article  MATH  MathSciNet  Google Scholar 

  54. McDill JM, Goldak JA, Oddy AS, Bibby MJ (1987) Isoparametric quadrilaterals and hexahedrons for mesh-grading algorithms. Commun Appl Numer Methods 3:155–163

    Article  MATH  Google Scholar 

  55. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  56. Natarajan S, Ooi ET, Man H, Song C (2015) Finite element computations over quadtree meshes: strain smoothing and semi-analytical formulation. Int J Adv Eng Sci Appl Math 7(3):124–133

    Article  MATH  MathSciNet  Google Scholar 

  57. Newman TS, Yi H (2006) A survey of the marching cubes algorithm. Comput Gr 30:854–879

    Article  Google Scholar 

  58. Nübel V, Düster A, Rank E (2007) An rp-adaptive finite element method for the deformation theory of plasticity. Comput Mech 39:557–574

    Article  MATH  Google Scholar 

  59. Ooi ET, Man H, Natarajan S, Song C (2015) Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling. Eng Fract Mech 144:101–117

    Article  Google Scholar 

  60. Ooi ET, Natarajan S, Song C, Ooi EH (2016) Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon-quadtree meshes. Int J Impact Eng 90:154–164

    Article  Google Scholar 

  61. Ooi ET, Shi M, Song C, Tin-Loi F, Yang Z (2013) Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique. Eng Fract Mech 106(2012):1–21

    Article  Google Scholar 

  62. Ostachowicz W, Kudela P, Krawczuk M, Żak A (2011) Guided waves in structures for SHM: the time-domain spectral element method. Wiley, New York

    MATH  Google Scholar 

  63. Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MATH  MathSciNet  Google Scholar 

  64. Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13:57–78

    Article  MATH  MathSciNet  Google Scholar 

  65. Patera AT (1984) A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  66. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MATH  MathSciNet  Google Scholar 

  67. Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781

    Article  MATH  MathSciNet  Google Scholar 

  68. Ramière I, Angot P, Belliard M (2007) A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J Comput Phys 225:1347–1387

    Article  MATH  MathSciNet  Google Scholar 

  69. Rand A, Gillette A, Bajaj C (2014) Quadratic serendipity finite elements on polygons using generalized barycentric coordinates. AMS Math Comput 83:2691–2716

    Article  MATH  MathSciNet  Google Scholar 

  70. Ranjbar M, Mashayekhi M, Parvizian J, Düster A, Rank E (2014) Using the finite cell method to predict crack initiation in ductile materials. Comput Mater Sci 82:427–434

    Article  Google Scholar 

  71. Reddy P, Montas HJ, Samet H, Shirmohammadi A (2001) Quadtree-based triangular mesh generation for finite element analysis of heterogeneous spatial data. In: ASAE annual international meeting, 01-3072, pp 1–25

  72. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95:811–846

    Article  MATH  MathSciNet  Google Scholar 

  73. Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11:425–437

    Article  Google Scholar 

  74. Samet H (1984) The quadtree and related hierarchical data structures. Comput Surv 6(2):187–260

    Article  MathSciNet  Google Scholar 

  75. Saputra A, Talebi H, Tran D, Birk C, Song C (2017) Automatic image-based stress analysis by the scaled boundary finite element method. Int J Numer Methods Eng 109:697–738

    Article  MathSciNet  Google Scholar 

  76. Saputra AA, Talebi H, Tran D, Birk C, Song C (2017) Automatic image-based stress analysis by the scaled boundary finite element method. Int J Numer Methods Eng 109:697–738

    Article  MathSciNet  Google Scholar 

  77. Schillinger D (2012) The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. Ph.D. thesis, Technical University Munich

  78. Schillinger D, Cai Q, Mundani RP, Rank E (2013) Advanced computing lecture notes in computational science and engineering, vol 93. In: Michael B, Hans-Joachim B, Tobias W (eds) A review of the finite cell method for nonlinear structural analysis of complex CAD and image-based geometric models. Springer, Heidelberg, pp 1–23

    Google Scholar 

  79. Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252:116–150

  80. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171–1202

    Article  MATH  MathSciNet  Google Scholar 

  81. Schillinger D, Kollmannsberger S, Mundani RP, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. In: IOP conference series: materials science and engineering, vol 10

  82. Schillinger D, Ruess M (2015) The finite cell method: a review in the context of high-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455

    Article  MATH  MathSciNet  Google Scholar 

  83. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

    Article  MATH  MathSciNet  Google Scholar 

  84. Sehlhorst HG (2011) Numerical homogenization startegies for cellular materials with applications in structural mechanics. VDI Fortschritt-Berichte Reihe 18 Nr. 333

  85. Sehlhorst HG, Jänicke R, Düster A, Rank E, Steeb H, Diebels S (2009) Numerical investigations of foam-like materials by nested high-order finite element methods. Comput Mech 45:45–59

    Article  MATH  Google Scholar 

  86. Seriani G, Priolo E (1994) Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem Anal Des 16(3–4):337–348

    Article  MATH  MathSciNet  Google Scholar 

  87. Shrestha S, Ohga M (2007) On the coupled FE-SBFE method for fracture mechanics applications. J Appl Mech 10:187–192

    Article  Google Scholar 

  88. Song C (2009) The scaled boundary finite element method in structural dynamics. Int J Numer Methods Eng 77:1139–1171

    Article  MATH  MathSciNet  Google Scholar 

  89. Song C, Vrcelj Z (2008) Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method. Eng Fract Mech 75:1960–1980

    Article  Google Scholar 

  90. Song C, Wolf JP (1997) The scaled boundary finite-element method - alias consistent infinitesimal finite-element cell method - for elastodynamics. Comput Methods Appl Mech Eng 147:329–355

    Article  MATH  MathSciNet  Google Scholar 

  91. Song C, Wolf JP (1999) The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion. Int J Num Methods Eng 45:1403–1431

    Article  MATH  Google Scholar 

  92. Song C, Wolf JP (2002) Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput Struct 80:183–197

    Article  Google Scholar 

  93. Sukumar N (2013) Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons. Comput Methods Appl Mech Eng 263:27–41

    Article  MATH  MathSciNet  Google Scholar 

  94. Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13:129–163

    Article  MATH  MathSciNet  Google Scholar 

  95. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  96. Szabó B, Babuška I (2011) Introduction to finite element analysis: formulation, verification and validation. Wiley, New York

    Book  MATH  Google Scholar 

  97. Szabó B, Düster A, Rank E (2004) Encyclopedia of computational mechanics—volume 1: fundamentals, chapter 5. Wiley, New York

    Google Scholar 

  98. Tabarraei A, Sukumar N (2005) Adaptive computations on conforming quadtree meshes. Finite Elem Anal Des 41:686–702

    Article  Google Scholar 

  99. Tabarraei A, Sukumar N (2008) Extended finite element method on polygonal and quadtree meshes. Comput Methods Appl Mech Eng 197:425–438

    Article  MATH  MathSciNet  Google Scholar 

  100. Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187–1192

    Article  Google Scholar 

  101. Vu TH, Deeks AJ (2006) Use of higher-order shape functions in the scaled boundary finite element method. Int J Numer Methods Eng 65:1714–1733

    Article  MATH  MathSciNet  Google Scholar 

  102. Vu TH, Deeks AJ (2008) A p adaptive procedure for the scaled boundary finite element method. Int J Numer Methods Eng 73:47–70

    Article  MATH  MathSciNet  Google Scholar 

  103. Wachspress E (1975) A rational finite element basis. Academic Press, Cambridge

    MATH  Google Scholar 

  104. Weinberg K, Gabbert U (1999) Adaptive local-global analysis by pNh transition elements. Tech Mech 19:115–126

    Google Scholar 

  105. Weinberg K, Gabbert U (2002) An adaptive pNh-technique for global-local finite element analysis. Eng Comput 19:485–500

    Article  MATH  Google Scholar 

  106. Wolf JP, Song C (1996) Static stiffness of unbounded soil by finite-element method. J Geotech Eng 122:267–273

    Article  Google Scholar 

  107. Wolf JP, Song C (1998) Unit impulse response of unbounded medium by scaled boundary finite-element method. Comput Methods Appl Mech Eng 159:355–367

    Article  MATH  Google Scholar 

  108. Wolf JP, Song C (2000) The scaled boundary finite-element method—a primer: derivations. Comput Struct 78:191–210

    Article  Google Scholar 

  109. Yang Z (2011) The finite cell method for geometry-based structural simulation. Ph.D. thesis, Technical University Munich

  110. Yang Z, Kollmannsberger S, Düster A, Ruess M, Grande Garcia E, Burgkart R, Rank E (2011) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216

    Article  MathSciNet  Google Scholar 

  111. Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471

    Article  Google Scholar 

  112. Yang ZJ (2006) Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng Fract Mech 73:1711–1731

    Article  Google Scholar 

  113. Yerry MA, Shephard MS (1983) A modified quadtree approach to finite element mesh generation. IEEE Comput Gr Appl 3(1):39–46

    Article  Google Scholar 

  114. Zander N, Bog T, Kollmannsberger S, Schillinger D, Rank E (2015) Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput Mech 55:499–517

    Article  MATH  MathSciNet  Google Scholar 

  115. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64:3527–3541

    Article  MATH  MathSciNet  Google Scholar 

  116. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

Dr. S. Duczek would like to thank the German Research Foundation (DFG) for its financial support under Grant DU 1613/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Gravenkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravenkamp, H., Duczek, S. Automatic image-based analyses using a coupled quadtree-SBFEM/SCM approach. Comput Mech 60, 559–584 (2017). https://doi.org/10.1007/s00466-017-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1424-1

Keywords

Navigation