Skip to main content
Log in

A direct traction boundary integral equation method for three-dimension crack problems in infinite and finite domains

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a direct traction boundary integral equation method (TBIEM) for three-dimensional crack problems. The TBIEM is based on the traction boundary integral equation (TBIE). The TBIE is collocated on both the external boundary and one of the crack surfaces. The displacements and tractions are used as unknowns on the external boundary and the relative crack opening displacements (CODs) are introduced as unknowns on the crack surface. In our implementation, all the surfaces of the considered structure are discretized into discontinuous elements to satisfy the continuity requirement for the existence of finite-part integrals, and special crack-front elements are constructed to capture the crack-tip behavior. To calculate the finite-part integrals, an adaptive singular integral technique is proposed. The stress intensity factors (SIFs) are computed through a modified COD extrapolation method. Numerical examples of SIFs computation are presented to demonstrate the accuracy and efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aliabadi MH (1997) Boundary element formulations in fracture mechanics. Appl Mech Rev 50:83

    Article  Google Scholar 

  2. Cruse TA (1988) Boundary element analysis in computational fracture mechanics, vol 1. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Pan E (1997) A general boundary element analysis of 2-D linear elastic fracture mechanics. Int J Fract 88(1):41–59

    Article  Google Scholar 

  4. Blandford GE, Ingraffea AR, Liggett JA (1981) Two-dimensional stress intensity factor computations using the boundary element method. Int J Numer Methods Eng 17(3):387–404

    Article  MATH  Google Scholar 

  5. Crouch SL, Starfield AM (1983) Boundary element methods in solid mechanics. J Appl Rock Mech Geol Eng 50(3):704–705

    Google Scholar 

  6. Pan E (1991) Dislocation in an infinite poroelastic medium. Acta Mech 87(1–2):105–115

    Google Scholar 

  7. Sirtori S, Maier G, Novati G, Miccoli S (1992) A Galerkin symmetric boundary-element method in elasticity: formulation and implementation. Int J Numer Methods Eng 35(2):255–282

    Google Scholar 

  8. Chen WH, Chen TC (1995) An efficient dual boundary element technique for a two dimensional fracture problem with multiple cracks. Int J Numer Methods Eng 38(10):1739–1756

    Google Scholar 

  9. Cisilino AP, Aliabadi MH (1999) Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Eng Fract Mech 63(6):713–733

    Article  Google Scholar 

  10. Mi Y, Aliabadi MH (1992) Dual boundary element method for three-dimensional fracture mechanics analysis. Eng Anal Bound Elem 10(2):161–171

    Article  Google Scholar 

  11. Pan E, Yuan FG (2000) Boundary element analysis of three-dimensional cracks in anisotropic solids. Int J Numer Methods Eng 48(2):211–237

    Article  MATH  Google Scholar 

  12. Wilde AJ, Aliabadi MH (1999) A 3-D dual BEM formulation for the analysis of crack growth. Comput Mech 23(3):250–257

    Article  MATH  Google Scholar 

  13. Wang PB, Yao ZH (2006) Fast multipole DBEM analysis of fatigue crack growth. Comput Mech 38(3):223–233

    Article  MATH  Google Scholar 

  14. Lachat JC, Watson JO (1976) Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics. Int J Numer Methods Eng 10(5):991–1005

    Article  MATH  Google Scholar 

  15. Aliabadi MH, Hall WS, Phemister TG (1985) Taylor expansions for singular kernels in the boundary element method. Int J Numer Methods Eng 21(12):2221–2236

    Article  MATH  MathSciNet  Google Scholar 

  16. Guiggiani M (1998) Formulation and numerical treatment of boundary integral equations with hypersingular kernels. Singular Integrals in Boundary Element Methods, Computational Mechanics Publications, Southampton (UK) & Boston (USA), pp 85–124

  17. Mi Y, Aliabadi MH (1994) Discontinuous crack-tip elements: application to 3D boundary element method. Int J Fract 67(3):R67–R71

    Article  Google Scholar 

  18. Zhang J, Qin X, Han X, Li G (2009) A boundary face method for potential problems in three dimensions. Int J Numer Methods Eng 80(3):320–337

    Article  MATH  MathSciNet  Google Scholar 

  19. Mi Y (1996) Three-dimensional analysis of crack growth. Computational Mechanics Publications, Southampton

  20. Tada H, Paris PC, Irwin GR, Tada H (2000) The stress analysis of cracks handbook, vol 130. ASME Press, New York

    Book  Google Scholar 

  21. Raju IS, Newman JC (1977) Three dimensional finite-element analysis of finite-thickness fracture specimens. NASA, Washington, DC

  22. Murakami Y, Hasebe N (eds) (2001) Stress intensity factors handbook. Elsevier Science, Amsterdam/New York

  23. Raju IS, Newman JC (1979) Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates. Eng Fract Mech 11(4):817–829

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Science Foundation of China under Grant Numbers 11172098, in part by National 973 Project of China under grant number 2010CB328005 and in part by Hunan Provincial Natural Science Foundation for Creative Research Groups of China (Grant No. 12JJ7001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Zhang.

Appendices

Appendix 1

$$\begin{aligned} M^{0}&= 1.254611404\xi +1.672815209\xi ^{2} -3.763834213\xi \sqrt{1+\eta } \\&-5.018445625\xi ^{2}\sqrt{1+\eta }-5.018445625\xi (1+\eta ) \\&+3.345630416\xi ^{2}(1+\eta ) \\ M^{1}&= -1.254611404\xi +1.672815209\xi ^{2}+3.763834213\xi \sqrt{1+\eta } \\&-5.018445625\xi ^{2}\sqrt{1+\eta }-2.509222810\xi (1+\eta ) \\&+3.345630416\xi ^{2}(1+\eta ) \\ M^{2}&= -2.143500293\xi +2.858000394\xi ^{2}+3.763834213\xi \sqrt{1+\eta } \\&-5.018445623\xi ^{2}\sqrt{1+\eta }-1.620333921\xi (1+\eta ) \\&+2.160445229\xi ^{2}(1+\eta ) \\ M^{3}&= 2.143500292\xi +2.858000396\xi ^{2}-3.763834212\xi \sqrt{1+\eta } \\&-5.018445628\xi ^{2}\sqrt{1+\eta }+1.620333920\xi (1+\eta ) \\&+2.160445232\xi ^{2}(1+\eta ) \\ M^{4}&= 1.881917111+0.5e-8\xi +-3.345630412\xi ^{2} \\&-5.645751329\sqrt{1+\eta }-0.18e-7\xi \sqrt{1+\eta } \\&+10.03689123\xi ^{2}\sqrt{1+\eta }+3.763834218(1+\eta ) \\&+0.13e-7\xi (1+\eta )-6.691260818\xi ^{2}(1+\eta ) \\ M^{5}&= 2.731445032\xi -3.641926709\xi ^{2}-7.527668433\xi \sqrt{1+\eta } \\&+10.03689124\xi ^{2}\sqrt{1+\eta }+4.129556734\xi (1+\eta ) \\&-5.506075642\xi ^{2}(1+\eta ) \\ M^{6}&= 3.215250440+0.3e-8\xi -5.716000784\xi ^{2} \\&-5.645751320\sqrt{1+\eta }-0.10e-7\xi \sqrt{1+\eta } \\&+10.03689124\xi ^{2}\sqrt{1+\eta }+2.430500880(1+\eta ) \\&+0.6e-8\xi (1+\eta )-4.320890456\xi ^{2}(1+\eta ) \\ M^{7}&= -2.731445031\xi -3.641926715\xi ^{2}+7.527668426\xi \sqrt{1+\eta } \\&+10.03689125\xi ^{2}\sqrt{1+\eta }+-4.129556728\xi (1+\eta ) \\&+ -5.506075646\xi ^{2}(1+\eta ) \\ M^{8}&= -4.097167551+7.283853429\xi ^{2}+11.29150265\sqrt{1+\eta } \\&-20.07378250\xi ^{2}\sqrt{1+\eta }-6.194335099(1+\eta ) \\&-0.2e-8\xi (1+\eta )+11.01215129\xi ^{2}(1+\eta ) \\ \end{aligned}$$

Appendix 2

$$\begin{aligned} M^{0}&= 31.87450619+14.16644724\xi +14.16644717\eta \\&-80.06422983\sqrt{1+\xi }\sqrt{1+\eta } \\&-16.06324133\xi \sqrt{1+\xi }\sqrt{1+\eta } -16.06324115\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }+48.18972364(1+\xi )(1+\eta ) \\&-3.79358801\xi (1+\xi )(1+\eta )-3.79358810\eta \\&\times (1+\xi )(1+\eta ) \\ M^{1}&= 48.55017632+23.31444932\xi +19.18489251\eta \\&-119.7183808\sqrt{1+\xi }\sqrt{1+\eta } \\&-27.44400593\xi \sqrt{1+\xi }\sqrt{1+\eta }-16.06324078\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }+71.16820448(1+\xi )(1+\eta ) \\&-3.79358790\xi (1+\xi )(1+\eta )-10.03689095\eta \\&\times (1+\xi )(1+\eta ) \\ M^{2}&= 63.44806842+26.55511681\xi +26.55511668\eta \\&-159.3725312\sqrt{1+\xi }\sqrt{1+\eta } \\&-27.44400556\xi \sqrt{1+\xi }\sqrt{1+\eta }-27.44400519\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }+95.92446278(1+\xi )(1+\eta ) \\&-10.03689065\xi (1+\xi )(1+\eta )-10.03689086\eta \\&\times (1+\xi )(1+\eta ) \\ M^{3}&= 48.55017607+19.18489251\xi +23.31444911\eta \\&-119.7183802\sqrt{1+\xi }\sqrt{1+\eta } \\&-16.06324097\xi \sqrt{1+\xi }\sqrt{1+\eta }-27.44400554\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }+71.16820413(1+\xi )(1+\eta ) \\&-10.03689076\xi (1+\xi )(1+\eta )-3.79358802\eta \\&\times (1+\xi )(1+\eta )\\ M^{4}&= -67.6957080-67.6957080\xi -29.58750589\eta \\&+170.0419981\sqrt{1+\xi }\sqrt{1+\eta }+ \\&34.97167356\xi \sqrt{1+\xi }\sqrt{1+\eta }+32.12648266\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }-102.3462901(1+\xi )(1+\eta ) \\&+7.58717619\xi (1+\xi )(1+\eta )+10.03689064\eta \\&\times (1+\xi )(1+\eta ) \\ M^{5}&= -99.2692723-47.43906644\xi -38.65678635\eta \\&+249.3503046\sqrt{1+\xi }\sqrt{1+\eta }+ \\&54.88801273\xi \sqrt{1+\xi }\sqrt{1+\eta }+34.97167358\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }-150.0810323(1+\xi )(1+\eta ) \\&+10.03689065\xi (1+\xi )(1+\eta )+20.07378216\eta \\&\times (1+\xi )(1+\eta ) \\ M^{6}&= -99.2692714-38.65678600\xi -47.43906602\eta \\&+249.3503027\sqrt{1+\xi }\sqrt{1+\eta } \\&+34.97167346\xi \sqrt{1+\xi }\sqrt{1+\eta }+54.88801221\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }-150.0810313(1+\xi )(1+\eta ) \\&+20.07378195\xi (1+\xi )(1+\eta )+10.03689071\eta \\&\times (1+\xi )(1+\eta ) \\ M^{7}&= -67.6957080-29.58750589\xi -30.39767274\eta \\&+170.0419981\sqrt{1+\xi }\sqrt{1+\eta } \\&+32.12648266\xi \sqrt{1+\xi }\sqrt{1+\eta }+34.97167356\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }-102.3462901(1+\xi )(1+\eta ) \\&+10.03689064\xi (1+\xi )(1+\eta )+7.58717619\eta \\&\times (1+\xi )(1+\eta )\\ M^{8}&= 142.5070281+62.86012379\xi +62.86012350\eta \\&-359.9110701\sqrt{1+\xi }\sqrt{1+\eta } \\&-69.94334743\xi \sqrt{1+\xi }\sqrt{1+\eta }-69.94334662\eta \\&\times \sqrt{1+\xi }\sqrt{1+\eta }+218.4040420(1+\xi )(1+\eta ) \\&-20.07378115\xi (1+\xi )(1+\eta )-20.07378159\eta \\&\times (1+\xi )(1+\eta ) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, G., Zhang, J., Huang, C. et al. A direct traction boundary integral equation method for three-dimension crack problems in infinite and finite domains. Comput Mech 53, 575–586 (2014). https://doi.org/10.1007/s00466-013-0918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0918-8

Keywords

Navigation